N 後0的個數

2021-09-30 05:03:12 字數 1337 閱讀 7336

問題描述

給定引數n(n為正整數),請計算n的階乘n!末尾所含有「0」的個數。

例如,5!=120,其末尾所含有的「0」的個數為1;10!= 3628800,其末尾所含有的「0」的個數為2;20!= 2432902008176640000,其末尾所含有的「0」的個數為4。

計算公式

這裡先給出其計算公式,後面給出推導過程。

令f(x)表示正整數x末尾所含有的「0」的個數,則有:

當0 < n < 5時,f(n!) = 0;

當n >= 5時,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

問題分析

顯然,對於階乘這個大數,我們不可能將其結果計算出來,再統計其末尾所含有的「0」的個數。所以必須從其數字特徵進行分析。下面我們從因式分解的角度切入分析。

我們先考慮一般的情形。對於任意乙個正整數,若對其進行因式分解,那麼其末尾的「0」必可以分解為2*5。在這裡,每乙個「0」必然和乙個因子「5」相對應。但請注意,乙個數的因式分解中因子「5」不一定對應著乙個「0」,因為還需要乙個因子「2」,才能實現其一一對應。

我們再回到原先的問題。這裡先給出乙個結論:

結論1: 對於n的階乘n!,其因式分解中,如果存在乙個因子「5」,那麼它必然對應著n!末尾的乙個「0」。

下面對這個結論進行證明:

(1)當n < 5時, 結論顯然成立。

(2)當n >= 5時,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是乙個不含因子「5」的整數。

對於序列5k, 5(k-1), ..., 10, 5中每乙個數5i(1 <= i <= k),都含有因子「5」,並且在區間(5(i-1),5i)(1 <= i <= k)內存在偶數,也就是說,a中存在乙個因子「2」與5i相對應。即,這裡的k個因子「5」與n!末尾的k個「0」一一對應。

我們進一步把n!表示為:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出結論1。

上面證明了n的階乘n!末尾的「0」與n!的因式分解中的因子「5」是一一對應的。也就是說,計算n的階乘n!末尾的「0」的個數,可以轉換為計算其因式分解中「5」的個數。

令f(x)表示正整數x末尾所含有的「0」的個數, g(x)表示正整數x的因式分解中因子「5」的個數,則利用上面的的結論1和公式1有:

f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)

所以,最終的計算公式為:

當0 < n < 5時,f(n!) = 0;

當n >= 5時,f(n!) = k + f(k!), 其中 k = n / 5(取整)。

統計n!後0的個數

統計0的個數,你只需要統計2 5的個數,然而在該數列中,5的個數遠遠少於2的個數,所以僅僅只需要統計5的個數即可。code include include include include include include using namespace std define ll long long ...

n!末尾0的個數

肯定不能直接求出 n 然後在計算後邊有多少個0 因為 1000000 的位數就是 5565709 對於 n!的末尾如果有乙個 0 的話,必然有乙個 5 與其對應著 所以就是找從 1 到 n 這些數的約數 因子 中有多少個 5 它們有幾個 5,n 末尾就有幾個0 令f x 表示正整數x末尾所含有的 0...

N階乘末尾0的個數

輸入乙個正整數n,求n 即階乘 末尾有多少個0?比如 n 10 n 3628800,所以答案為2 輸入為一行,n 1 n 1000 輸出乙個整數,即題目所求要判斷末尾有幾個0就是判斷可以整除幾次10。10的因子有5和2,而在0 9之間5的倍數只有乙個,2的倍數相對較多,所以本題也就轉換成了求n階乘中...