動態規劃(英語:dynamic programming,簡稱dp)是一種在數學、管理科學、電腦科學、經濟學和生物資訊學中使用的,通過把原問題分解為相對簡單的子問題的方式求解複雜問題的方法。
動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解乙個給定問題,我們需要解其不同部分(即子問題),再根據子問題的解以得出原問題的解。
通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化儲存,以便下次需要同乙個子問題解之時直接查表。這種做法在重複子問題的數目關於輸入的規模呈指數增長時特別有用。
動態規劃問題滿足三大重要性質
最優子結構性質: 如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
子問題重疊性質: 子問題重疊性質是指在用遞迴演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重複計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每乙個子問題只計算一次,然後將其計算結果儲存在乙個**中,當再次需要計算已經計算過的子問題時,只是在**中簡單地檢視一下結果,從而獲得較高的效率。
無後效性: 將各階段按照一定的次序排列好之後,對於某個給定的階段狀態,它以前各階段的狀態無法直接影響它未來的決策,而只能通過當前的這個狀態。換句話說,每個狀態都是過去歷史的乙個完整總結。這就是無後向性,又稱為無後效性。
【01揹包】詳解:
【完全揹包】詳解:
DP動態規劃(持續更新)
不用我說了吧 有乙個o nlogn 的做法 smartoj1212 include using namespace std char a 30001 b 30001 int dp 3001 3001 int main printf d dp strlen a 1 strlen b 1 有乙個東西叫錯...
動態規劃入門 持續更新
本文通過01揹包問題引入動態規劃,來介紹各種揹包與初等動態規劃問題,持續更新中.問題概述 有n個重量和價值分別為 w i 和 v i 的物品。從這些物品中挑選出總重量不超過 w 的物品,求所有挑選方案中價值總和的最大值。下標從1開始 樣例 input n 4,w 10,w,v output 12 選...
動態規劃 dp
威威貓系列故事 打地鼠 威威貓最近不務正業,每天沉迷於遊戲 打地鼠 每當朋友們勸他別太著迷遊戲,應該好好工作的時候,他總是說,我是威威貓,貓打老鼠就是我的工作!無話可說.我們知道,打地鼠是一款經典小遊戲,規則很簡單 每隔乙個時間段就會從地下冒出乙隻或多隻地鼠,玩遊戲的人要做的就是打地鼠。假設 1 每...