演算法學習 動態規劃基礎篇

2021-09-26 18:34:22 字數 765 閱讀 9923

動態規劃(英語:dynamic programming,簡稱dp)是一種在數學、管理科學、電腦科學、經濟學和生物資訊學中使用的,通過把原問題分解為相對簡單的子問題的方式求解複雜問題的方法。動態規劃常常適用於有重疊子問題[1]和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解乙個給定問題,我們需要解其不同部分(即子問題),再根據子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化儲存,以便下次需要同乙個子問題解之時直接查表。這種做法在重複子問題的數目關於輸入的規模呈指數增長時特別有用。(維基百科上對於動態規劃的定義)

我的簡單理解就是問題的求解可以分成很多子問題,然後將每個子問題的最優解儲存起來,下次需要該子問題的解的時候就直接查詢呼叫,避免了很多重複的計算。

1、遞迴+記憶化 (將子結果進行儲存)==》遞推:從題目中獲取遞推公式,並且遞推的順序應該是從下往上的

遞推公式為f(n)=f(n-1)+f(n-2)

temp[0]=1;

temp[1]=2;

for(int i=2;i2、狀態的定義:opt(n),dp[n],fib(n);

3、狀態轉移方程:opt(n)=best_of(opt(n-1),opt(n-2));

演算法學習 動態規劃

動態規劃是解決多階段決策過程最優化的一種方法。對於離散問題,解析數學無法施展,動態規劃則成為非常有效的工具。兩個弱點 1.得出目標函式方程後,尚無統一的處理方法,必須根據具體問題的性質結合相應的數學技巧來求解 2.維數障礙。動態規劃模型的分類 根據決策過程的時間參量是離散的還是連續的變數 1.離散 ...

演算法學習 動態規劃實踐

完成日期 2017.10.26 1.實踐題目 數字三角形 2.問題描述 給定乙個由 n行數字組成的數字三角形如下圖所示。試設計乙個演算法,計算出從三角形 的頂至底的一條路徑 每一步可沿左斜線向下或右斜線向下 使該路徑經過的數字總和最大。3.演算法描述 1 首先該問題有最優子結構和重疊子問題的性質,因...

演算法學習08 動態規劃

遞迴問題 暴力遞迴轉換成動態規劃 動態規劃本身就是暴力遞迴的優化,是一種用空間換時間的策略 動態規劃 我們不知道怎麼計算n 但我們知道 n 與 n 1 之間存在一定關係n n n 1 得到遞推的狀態轉移公式.當暴力遞迴到頭得到0 1,得到base case,這樣得到了遞迴的方法.public sta...