L1和L2正則化的理解

2021-09-23 22:04:31 字數 399 閱讀 1583

摘錄自:

正則化之所以能夠降低過擬合的原因在於,正則化是結構風險最小化的一種策略實現。

給loss function加上正則化項,能使得新得到的優化目標函式h = f+normal,需要在f和normal中做乙個權衡(trade-off),如果還像原來只優化f的情況下,那可能得到一組解比較複雜,使得正則項normal比較大,那麼h就不是最優的,因此可以看出加正則項能讓解更加簡單,符合奧卡姆剃刀理論,同時也比較符合在偏差和方差(方差表示模型的複雜度)分析中,通過降低模型複雜度,得到更小的泛化誤差,降低過擬合程度。

l1正則化和

L1和L2正則化

l1和l2正則化 l1與l2正則化都是防止模型過擬合,其方式略有不同。具體請見下文。1 l1 正則化l1正則化 1範數 是指,各權值 變數 特徵 絕對值之和。其作用是產生權值的稀疏模型,也就是讓大部分權值為0.為什麼能產生權值稀疏模型?因為如下圖所示,各權值絕對值之和後得到乙個矩陣,很容易在矩陣的頂...

l1和l2正則化

import tensorflow as tf import tensorflow.contrib as contrib weight tf.constant 1.0,2.0 3.0,4.0 with tf.session as sess print sess.run contrib.layers....

L1和L2正則化

l0範數指的是向量中非零元素的個數,l0正則化就是限制非零元素的個數在一定的範圍,這很明顯會帶來稀疏。一般而言,用l0範數實現稀疏是乙個np hard問題,因此人們一般使用l1正則化來對模型進行稀疏約束。稀疏性 參考 另外一種解釋 假設費用函式l與某個引數w的關係如圖所示 則最優的 w在綠點處,w非...