演算法複雜度分為時間複雜度和空間複雜度,乙個好的演算法應該具體執行時間短,所需空間少的特點。
隨著計算機硬體和軟體的提公升,乙個演算法的執行時間是算不太精確的。只能依據統計方法對演算法進行估算。我們拋開硬體和軟體的因素,演算法的好壞直接影響程式的執行時間。
我們看一下小例子:
int value = 0; // 執行了1次
for (int i = 0; i < n; i++)
這個演算法執行了 1 + n 次,如果n無限大,我們可以把前邊的1忽略,也就是說這個演算法執行了n次
時間複雜度常用大o符號表示,這個演算法的時間複雜度就是o(n).
概念: 一般情況下,演算法的基本操作重複執行的次數是模組n的某一函式f(n),因此,演算法的時間複雜度記做 t(n) = o(f(n))。 隨著模組n的增大,演算法執行的時間增長率f(n)的增長率成正比,所以f(n)越小,演算法 的時間複雜度越低,演算法的效率越高。
計算時間複雜度
1.去掉執行時間中的所有加法常數。
2.只保留最高端項。
3.如果最高端項存在且不是1,去掉與這個最高端相乘的常數得到時間複雜度
我們看乙個例子
for (int i = 0; i < n; i++) }
當 i = 0 時 裡面的fo迴圈執行了n次,當i等待1時裡面的for迴圈執行了n - 1次,當i 等於2裡裡面的fro執行了n - 2次........所以執行的次數是
根據我們上邊的時間複雜度演算法
1.去掉執行時間中的所有加法常數: 沒有加法常數不用考慮
2.只保留最高端項: 只保留
3. 去掉與這個最高端相乘的常數: 去掉
最終這個演算法的時間複雜度為
再看乙個線性的
for ( int i = 0; i < n; i++)
因為迴圈要執行n次所以時間複雜度為o(n)
其它的我也就不乙個乙個算了,下面給出了常用的時間複雜度
排序法最差時間分析
平均時間複雜度
穩定度空間複雜度
氣泡排序
o(n2)
o(n2)
穩定o(1)
快速排序
o(n2)
o(n*log2n)
不穩定o(log2n)~o(n)
選擇排序
o(n2)
o(n2)
穩定o(1)
二叉樹排序
o(n2)
o(n*log2n)
不一頂o(n)
插入排序
o(n2)
o(n2)
穩定o(1)
堆排序o(n*log2n)
o(n*log2n)
不穩定o(1)
希爾排序oo
不穩定o(1)
類似於時間複雜度的討論,乙個演算法的空間複雜度(space complexity)s(n)定義為該演算法所耗費的儲存空間,它也是問題規模n的函式。漸近空間複雜度也常常簡稱為空間複雜度。
空間複雜度(space complexity)是對乙個演算法在執行過程中臨時占用儲存空間大小的量度。乙個演算法在計算機儲存器上所占用的儲存空間,包括儲存演算法本身所占用的儲存空間,演算法的輸入輸出資料所占用的儲存空間和演算法在執行過程中臨時占用的儲存空間這三個方面。演算法的輸入輸出資料所占用的儲存空間是由要解決的問題決定的,是通過參數列由呼叫函式傳遞而來的,它不隨本演算法的不同而改變。儲存演算法本身所占用的儲存空間與演算法書寫的長短成正比,要壓縮這方面的儲存空間,就必須編寫出較短的演算法。演算法在執行過程中臨時占用的儲存空間隨演算法的不同而異,有的演算法只需要占用少量的臨時工作單元,而且不隨問題規模的大小而改變,我們稱這種演算法是「就地\"進行的,是節省儲存的演算法,如這一節介紹過的幾個演算法都是如此;有的演算法需要占用的臨時工作單元數與解決問題的規模n有關,它隨著n的增大而增大,當n較大時,將占用較多的儲存單元,例如將在第九章介紹的快速排序和歸併排序演算法就屬於這種情況。如當乙個演算法的空間複雜度為乙個常量,即不隨被處理資料量n的大小而改變時,可表示為o(1);當乙個演算法的空間複雜度與以2為底的n的對數成正比時,可表示為0(10g2n);當乙個演算法的空i司複雜度與n成線性比例關係時,可表示為0(n).若形參為陣列,則只需要為它分配乙個儲存由實參傳送來的乙個位址指標的空間,即乙個機器字長空間;若形參為引用方式,則也只需要為其分配儲存乙個位址的空間,用它來儲存對應實參變數的位址,以便由系統自動引用實參變數。
演算法複雜度 時間複雜度和空間複雜度
1 時間複雜度 1 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且乙個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數...
演算法複雜度 時間複雜度和空間複雜度
演算法複雜度 時間複雜度和空間複雜度 關鍵字 演算法複雜度 時間複雜度 空間複雜度 1 時間複雜度 1 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時 間多,哪個演算法花費的時間少就可以...
演算法複雜度 時間複雜度和空間複雜度
演算法的時間複雜度是指執行演算法所需要的計算工作量。n稱為問題的規模,當n不斷變化時,時間頻度t n 也會不斷變化。但有時我們想知道它變化時呈現什麼規律。為此,我們引入時間複雜度概念。一般情況下,演算法中基本操作重複執行的次數是問題規模n的某個函式,用t n 表示,若有某個輔助函式f n 存在乙個正...