對於python中兩種延遲生成值的結構:
生成器函式
生成器表示式
我相信生成器函式各位都是不陌生的,就是在函式返回值前用yield,但是注意一點,這裡我並沒有說用yield代替return,兩個意義其實是不同的,所以不存在代替的問題,兩者可以共存。
例如:
def instance():
for i in range(1, 6):
yield i
if i == 4:
return "over"
所以兩者共存沒有牟盾。
當然利用關鍵字yield建立的函式是乙個生成器,每次呼叫都會返回乙個值。
同樣,生成器表示式也是乙個節省記憶體空間的方法
其一般格式如下:
generator = (x for x in range(1, 8))
如上就是乙個生成器表示式,重點強調的是,生成器函式和生成器表示式本身就是乙個迭代器。
那麼為什麼說兩者可以節省記憶體空間呢?
如下的對比的例子
生成器函式:
def generator():
for i in range(1, 19):
yield i
每次呼叫是返回乙個值,而不是將所有的值一次性返回,其呼叫可以在任何的迭代工具中,如:
for i in generator():
print(i)
或者:x = generator()
# 產生乙個生辰器函式例項
while true:
print(next(x))
# 知道引發乙個stopiteration錯誤
而相同效果的普通函式,如:
def ordinary():
return [i for in range(1, 19)]
會一次性在記憶體中生成這個列表,從而加重的記憶體的負擔,這種在比較大的結構中影響更加明顯。
對於我們的生成器表示式,它和列表解析有些相似之處。
生成器表示式:
generator = (x for x in range(1, 19))
同樣我們可以在任何的迭代工具中使用這個生成器(本身是迭代器)
相似結構的列表解析,如:
list = [x for x in range(1, 19)]
同樣,我們的列表解析生成了乙個完整的列表,所以在資料較多時使用生成器表示式還是好的
重要的是,其實在資料較少時,使用列表解析更快,所以選哪個這裡考慮!
生成器 迭代器
最近見天一直在看廖大的python教程,卻發現很多基礎看著很簡單,但卻不會應用,歸根結底還是因為理解不到位,故而又將教程學了一遍,並將自己的理解記錄一下,也方便後面查閱。由於沒有相關程式設計基礎,有些理解可能是錯的,敬請批評指正。想深入具體學習廖大部落格請移步廖雪峰的官方 有時候用迴圈生成列表太過繁...
迭代器,生成器
迭代器 生成器 生成器的第1種實現方式 列表生成式改為生成器 python中yield關鍵字 函式中如果有yield,那麼呼叫這個函式的返回值為生成器。當生成器g呼叫next方法,執行函式,知道遇到yield就停止 再執行next,從上一次停止的地方繼續執行 函式中遇return直接退出,不繼續執行...
迭代器 生成器
迭代器 iter 可迭代物件 下乙個元素的值 next 可迭代物件 類中實現 iter 方法 提供迭代器 實現迭代器 import time class mylistiter object 迭代器類 def init self,data self.data data self.index 0 def...