康拓展開式

2021-08-28 03:16:14 字數 546 閱讀 3546

x=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]為整數,並且x=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!。

這就是康托展開式,該展開式是用來求乙個排列在其全部排列序列中是在第幾個的位置。

舉個例子:1324是排列數中第幾個大的數:第一位是1小於1的數沒有,是0個 0*3! 第二位是3小於3的數有1和2,但1已經在第一位了,所以只有乙個數2 1*2! 。第三位是2小於2的數是1,但1在第一位,所以有0個數 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2個,1324是第三個大數。

實現**:

int a[100],f[100];

void jiecheng()

}int main()

num+=(m*f[n-j]); //使用展開式

}cout<}

return 0;

}

泰勒展開式的推導

泰勒展開式真是個好東西。可以很方便的把乙個函式展開成冪級數。即 當 x相當小的時候。這種計算方式簡單又相當準確。可以從心裡感悟到數學美。此外,二階近似又比線性近似提高了乙個級別的精確度。可以從心靈裡感悟到近似函式典線努力的往原本的函式典線靠近。可想而知,再提高端數,就更精確了。當把階數拓展到n階 很...

泰勒展開式的推導

泰勒展開式的推導 導數是函式影象在某一點處的斜率,也就是縱座標變化率和橫座標變化率的比值。微分是指函式影象在某一點處的切線在橫座標取得 x以後,縱座標取得的增量。函式相加,導數也是相加和的積分等 於積分的和 泰勒展開式真是個好東西。可以很方便的把乙個函式展開成冪級數。即 從函式的線性近似 當把階數拓...

泰勒展開式的理解

若進行二次近似,近似的多項式和原始函式既過同一點,而且在同一點的導數相同,也就是多項式表達的函式在切線也相同。類似進行三次近似的話,不僅經過同一點,切線相同,彎曲程度也相同了。一直下去。這樣近似相關程度多大,近似的也就越精確了。來自樓上提供的 intuition explanation of tay...