import cv2
import numpy as np
# 函式cv2.pyrdown()是降低影象解析度,變為原來一半
# 將轉化為灰度,再進行二值化
ret, thresh = cv2.threshold(cv2.cvtcolor(img.copy(), cv2.color_bgr2gray), 127, 255, cv2.thresh_binary)
for c in contours:
# 邊界框:
# find bounding box coordinates
# boundingrect()將輪廓轉化成(x,y,w,h)的簡單邊框,cv2.rectangle()畫出矩形[綠色(0, 255, 0)]
x, y, w, h = cv2.boundingrect(c)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 最小矩形區域:
# 1 計算出最小矩形區域 2 計算這個的矩形頂點 3 由於計算出來的是浮點數,而畫素是整型,所以進行轉化 4 繪製輪廓[紅色(0, 0, 255)]
# find minimum area
rect = cv2.minarearect(c)
# calculate coordinates of the minimum area rectangle
box = cv2.boxpoints(rect)
# normalize coordinates to integers
box = np.int0(box)
# draw contours
cv2.drawcontours(img, [box], 0, (0, 0, 255), 3)
# 最小閉圓的輪廓:
# calculate center and radius of minimum enclosing circle[藍色(255, 0, 0)]
(x, y), radius = cv2.minenclosingcircle(c)
# cast to integers
center = (int(x), int(y))
radius = int(radius)
# draw the circle
img = cv2.circle(img, center, radius, (255, 0, 0), 2)
# 輪廓檢測:繪製輪廓
cv2.drawcontours(img, contours, -1, (255, 0, 0), 1)
cv2.imshow("contours", img)
cv2.waitkey()
cv2.destroyallwindows()
OpenCV 輪廓及矩形框提取
參考 opencv3 c 輪廓的提取與篩選 define crt secure no warnings include include include using namespace cv using namespace xfeatures2d using namespace std intmain...
opencv提取外部輪廓並在外部加矩形框
這段時間一直在用opencv搞影象處理的問題,發現雖然可呼叫的函式多,但是直接找相應 還是很困難,就行尋找連通域,並在連通域外側加框,對於習慣使用mat矩形操作的我,真心感覺 少之又少,為防止以後自己還會用到,特在此記錄一下。要對下面的影象進行字元的邊緣檢測。程式中具體的步驟為 1 灰度化 二值化 ...
OpenCV輪廓篇 旋轉矩形矯正
之前一直這裡很迷,現在做乙個整理測試,下圖搬運。先看一下rotatedrect屬性定義 class cv exports rotatedrect 其中opencv奇葩的角度定義如下 其實觀點點就是我們定義的長和寬和opencv定義的輪廓長寬是不一樣的,所以需要轉化我認知的長於寬,傾斜角度也進行轉化。...