問題描述
有n個格仔,從左到右放成一排,編號為1-n。
共有m次操作,有3種操作型別:
1.修改乙個格仔的權值,
2.求連續一段格仔權值和,
3.求連續一段格仔的最大值。
對於每個2、3操作輸出你所求出的結果。
輸入格式
第一行2個整數n,m。
接下來一行n個整數表示n個格仔的初始權值。
接下來m行,每行3個整數p,x,y,p表示操作型別,p=1時表示修改格仔x的權值為y,p=2時表示求區間[x,y]內格仔權值和,p=3時表示求區間[x,y]內格仔最大的權值。
輸出格式
有若干行,行數等於p=2或3的操作總數。
每行1個整數,對應了每個p=2或3操作的結果。
樣例輸入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
樣例輸出
6 3
資料規模與約定
對於20%的資料n <= 100,m <= 200。
對於50%的資料n <= 5000,m <= 5000。
對於100%的資料1 <= n <= 100000,m <= 100000,0 <= 格仔權值 <= 10000。
//
// main.cpp
// 演算法訓練 操作格仔
//// created by nuu_tong on 2018/2/5.
// 線段樹模板題
#include
#include
#include
using
namespace
std;
const
int maxn=100005;
long
long tree[maxn*4];//注意要*4
int maximum[maxn*4];
int n,m;
void update(int l,int r,int x,int idx,int m)
tree[idx]=0;
maximum[idx]=0;
int mid=(l+r)>>1;
if(mid>=x)
update(l,mid,x,idx<<1,m);
else
update(mid+1,r,x,idx<<1|1,m);
tree[idx]=tree[idx<<1]+tree[idx<<1|1];
maximum[idx]=max(maximum[idx<<1],maximum[idx<<1|1]);
}long
long getsum(int l,int r,int idx,int left,int right)
int findmax(int l,int r,int idx,int left,int right)
int main()
for(int i=1;i<=m;i++)
演算法訓練 操作格仔
演算法訓練 操作格仔 時間限制 1.0s 記憶體限制 256.0mb 問題描述 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修改乙個格仔的權值,2.求連續一段格仔權值和,3.求連續一段格仔的最大值。對於每個2 3操作輸出你所求出的結果。輸入格式 第一行2個整數n,m...
演算法訓練 操作格仔
問題描述 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修改乙個格仔的權值,2.求連續一段格仔權值和,3.求連續一段格仔的最大值。對於每個2 3操作輸出你所求出的結果。輸入格式 第一行2個整數n,m。接下來一行n個整數表示n個格仔的初始權值。接下來m行,每行3個整數p...
演算法訓練 操作格仔
問題描述 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修改乙個格仔的權值,2.求連續一段格仔權值和,3.求連續一段格仔的最大值。對於每個2 3操作輸出你所求出的結果。輸入格式 第一行2個整數n,m。接下來一行n個整數表示n個格仔的初始權值。接下來m行,每行3個整數p...