利用pytorch對CIFAR 10資料集的分類

2021-08-14 23:51:04 字數 3610 閱讀 9505

步驟如下

1.使用torchvision載入並預處理cifar-10資料集、

2.定義網路

3.定義損失函式和優化器

4.訓練網路並更新網路引數

5.測試網路

執行環境:

windows+python3.6.3+pycharm+pytorch0.3.0

import torchvision as tv

import torchvision.transforms as transforms

import torch as t

from torchvision.transforms import topilimage

show=topilimage() #把tensor轉成image,方便視覺化

import matplotlib.pyplot as plt

import torchvision

import numpy as np

###############資料載入與預處理

transform = transforms.compose([transforms.totensor(),#轉為tensor

transforms.normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),#歸一化

])#訓練集

trainset=tv.datasets.cifar10(root='/python projects/test/data/',

train=true,

download=true,

transform=transform)

trainloader=t.utils.data.dataloader(trainset,

batch_size=4,

shuffle=true,

num_workers=0)

#測試集

testset=tv.datasets.cifar10(root='/python projects/test/data/',

train=false,

download=true,

transform=transform)

testloader=t.utils.data.dataloader(testset,

batch_size=4,

shuffle=true,

num_workers=0)

classes=('plane','car','bird','cat','deer','dog','frog','horse','ship','truck')

(data,label)=trainset[100]

print(classes[label])

show((data+1)/2).resize((100,100))

# dataiter=iter(trainloader)

# images,labels=dataiter.next()

# print(''.join('11%s'%classes[labels[j]] for j in range(4)))

# show(tv.utils.make_grid(images+1)/2).resize((400,100))

defimshow

(img):

img = img / 2 + 0.5

npimg = img.numpy()

plt.imshow(np.transpose(npimg, (1, 2, 0)))

dataiter = iter(trainloader)

images, labels = dataiter.next()

print(images.size())

imshow(torchvision.utils.make_grid(images))

plt.show()#關掉才能往後繼續算

#########################定義網路

import torch.nn as nn

import torch.nn.functional as f

class

net(nn.module):

def__init__

(self):

super(net,self).__init__()

self.conv1=nn.conv2d(3,6,5)

self.conv2=nn.conv2d(6,16,5)

self.fc1=nn.linear(16*5*5,120)

self.fc2=nn.linear(120,84)

self.fc3=nn.linear(84,10)

defforward

(self, x):

x = f.max_pool2d(f.relu(self.conv1(x)),2)

x = f.max_pool2d(f.relu(self.conv2(x)),2)

x = x.view(-1, 16 * 5 * 5)

x = f.relu(self.fc1(x))

x = f.relu(self.fc2(x))

x = self.fc3(x)

return x

net=net()

print(net)

#############定義損失函式和優化器

from torch import optim

criterion=nn.crossentropyloss()

optimizer=optim.sgd(net.parameters(),lr=0.01,momentum=0.9)

##############訓練網路

from torch.autograd import variable

import time

start_time = time.time()

for epoch in range(2):

running_loss=0.0

for i,data in enumerate(trainloader,0):

#輸入資料

inputs,labels=data

inputs,labels=variable(inputs),variable(labels)

#梯度清零

optimizer.zero_grad()

outputs=net(inputs)

loss=criterion(outputs,labels)

loss.backward()

#更新引數

optimizer.step()

# 列印log

running_loss += loss.data[0]

if i % 2000 == 1999:

print('[%d,%5d] loss:%.3f' % (epoch + 1, i + 1, running_loss / 2000))

running_loss = 0.0

print('finished training')

end_time = time.time()

print("spend time:", end_time - start_time)

Pytorch實現CIFAR 10資料集

練習pytorch,做個記錄。寫的有點亂 import torch import torchvision import torch.nn as nn from torchvision import transforms from torch.utils.data.dataloader import ...

機器學習 利用pickle載入cifar檔案

然後奉獻 def load cifar10 root 載入cifar全部資料 xs ys for b in range 1,2 f os.path.join root,data batch d b,x,y load cifar batch f 將所有batch整合起來 xtr np.concaten...

利用pytorch對二維資料進行求解梯度

今天我們利用pytorch對二維資料進行求導並輸出顯示,主要用到pytorch中的linear mseloss 等函式,具體的求導過程詳見下面 import torch create tensors of shape 10,3 and 10,2 x torch.randn 10,3 y torch....