import numpy as np
import neurolab as nl
import matplotlib.pyplot as plt
# 0 1 2-----------16*8
target = np.array([[0,0,0,0,0,0,0,0,
0,0,0,1,1,0,0,0,
0,0,1,0,0,1,0,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,0,1,0,0,1,0,0,
0,0,0,1,1,0,0,0,
0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,1,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,1,1,1,0,0,
0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,
0,0,1,1,1,1,0,0,
0,1,1,0,0,1,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,1,1,0,0,
0,0,0,1,1,0,0,0,
0,0,1,1,0,0,0,0,
0,1,1,0,0,0,0,0,
0,1,0,0,0,0,0,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0]])
#畫圖函式
def visualized (data, title):
fig, ax = plt.subplots()
ax.imshow(data, cmap=plt.cm.gray,interpolation='nearest')
ax.set_title(title)
plt.show()
#顯示012
for i in range(len(target)):
visualized(np.reshape(target[i], (16,8)), i)
#hopfield網路的值是1和-1
target[target == 0] = -1
#建立乙個hopfield神經網路,吸引子為target(012)
net = nl.net.newhop(target)
#定義3個測試資料
test_data1 =np.asfarray([0,0,0,0,0,0,0,0,
0,0,0,1,1,0,1,0,
0,0,1,0,0,1,0,0,
0,1,0,0,0,0,1,0,
0,1,0,0,1,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,1,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,1,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,0,0,0,1,0,
0,1,0,1,0,0,1,0,
0,0,1,0,0,1,0,0,
0,0,1,1,1,0,0,0,
0,0,0,0,0,0,0,0])
test_data2 =np.asfarray([0,0,0,1,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,1,1,0,0,0,
0,0,0,0,0,0,1,0,
0,1,0,0,1,0,0,0,
0,0,0,0,1,0,0,1,
0,0,0,1,1,0,1,0,
0,1,0,0,1,0,1,0,
0,0,0,0,1,0,0,0,
0,0,1,0,1,0,1,0,
0,0,0,1,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,1,0,0,1,
0,0,1,0,1,0,0,0,
0,0,0,1,1,1,0,0,
0,1,0,0,0,0,0,0])
test_data3 =np.asfarray([0,0,0,1,0,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,1,1,0,0,0,
0,0,0,1,0,0,1,0,
0,1,0,0,0,0,0,0,
0,0,0,0,1,0,0,1,
0,0,0,1,0,0,1,0,
0,1,0,0,1,0,1,0,
0,0,0,0,1,0,0,0,
0,0,1,0,0,0,1,0,
0,0,0,1,1,0,0,0,
0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,1,
0,0,1,0,0,0,0,0,
0,0,0,0,1,1,0,0,
0,1,0,0,0,0,0,0])
#顯示測試資料
visualized(np.reshape(test_data1, (16,8)), "test_data1")
visualized(np.reshape(test_data2, (16,8)), "test_data2")
visualized(np.reshape(test_data3, (16,8)), "test_data3")
test_data1[test_data1==0] = -1
#把測試資料輸入hopfield網路,得到輸出
out1 = net.sim([test_data1])
#判斷測試資料的數字是多少
for i in range(len(target)):
if((out1 == target[i]).all()):
print("test_data is :",i)
#顯示輸出
visualized(np.reshape(out1, (16,8)), "output1")
test_data2[test_data2==0] = -1
#把測試資料輸入hopfield網路,得到輸出
out2 = net.sim([test_data2])
#判斷測試資料的數字是多少
for i in range(len(target)):
if((out2 == target[i]).all()):
print("test_data is :",i)
#顯示輸出
visualized(np.reshape(out2, (16,8)), "output2")
test_data3[test_data3==0] = -1
#把測試資料輸入hopfield網路,得到輸出
out3 = net.sim([test_data3])
#判斷測試資料的數字是多少
for i in range(len(target)):
if((out3 == target[i]).all()):
print("test_data is :",i)
#顯示輸出
visualized(np.reshape(out3, (16,8)), "output3")
hopfield神經網路
初次接觸hopfield神經網路,有一些約束沒有注意,導致生出很多愚蠢的想法。一 hopfield神經網路其實沒有層的概念,所有的神經元全連線就形成了乙個hopdield神經網路的基本結構。既然是全連線,那麼誰先誰後 誰左誰右就沒有意義了,反正都是互聯的。二 hopfield神經網路既然沒有層的概念...
Hopfield神經網路
多層神經網路 模式識別 相互連線型網路 通過聯想記憶去除資料中的雜訊 1982年提出的hopfield神經網路是最典型的相互鏈結型網路。當輸入模式為某種狀態時,輸出端要給出與之相應的輸出模式。如果輸入模式與輸出模式一致,稱為自聯想記憶,否則,稱為異聯想記憶。網路結構上,hopfield神經網路是一種...
Hopfield神經網路
目錄hopfield網路計算圖 hopfield網路的能量函式 hnn型別 chnn 定義 forall x in r n,forall a in a,lim d f n x f n a 0 a為吸引子 半 正 負定函式 自治系統 衡點 dot f x 李雅普諾夫候選函式v dot x nabla ...