import tensorflow as tf
from numpy.random import randomstate
# 定義訓練資料batch大小
batch_size = 8
# 定義神經網路的引數
w1 = tf.variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.variable(tf.random_normal([3, 1], stddev=1, seed=1))
# 在shape的乙個維度上使用none可以方便使用不大的batch大小,在訓練時需要把資料分
# 成比較小的batch,但是在測試時,可以一次性使用全部的資料。當資料集比較小時這樣比較
# 方便測試,但資料集比價大時,將大量資料放入乙個batch可能會導致記憶體溢位。
x = tf.placeholder(tf.float32, shape=(none, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(none, 1), name='y-input')
# 定義神經網路前向傳播的過程
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
# 定義損失函式和反向傳播演算法
cross_entropy = -tf.reduce_mean(
y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.adamoptimizer(0.001).minimize(cross_entropy)
# 通過隨機數生成乙個模型資料集
rdm = randomstate(1)
dataset_size = 128
x = rdm.rand(dataset_size, 2)
# 定義規則來給出樣本的標籤。在這裡所有x1+x2<1的樣例都被認為是正樣本(比如零件合格),
# 而其他為負樣本(比如零件不合格)。和tensorflow遊樂場中的表示法不大一樣的地方是,
# 這裡使用0來表示負樣本,1來表示正樣本。大部分解決分類問題的神經網路都會採用0和1的表示方法。
y = [[int(x1+x2 < 1)] for (x1, x2) in x ]
# 建立乙個會話來執行tensorflow程式
with tf.session() as sess:
init_op = tf.initialize_all_variables()
# 初始化變數
sess.run(init_op)
print sess.run(w1)
print sess.run(w2)
'''在訓練之前神經網路引數的值為:
'''# 設定訓練的輪數
steps = 5000
for i in range(steps):
# 每次選取batch_size個樣本進行訓練。
start = (i * batch_size) % dataset_size
end = min(start+batch_size, dataset_size)
# 通過選取的樣本訓練神經網路並更新引數。
sess.run(train_step,
feed_dict=)
if i % 1000 == 0:
#每隔一段時間計算在所有資料上的交叉熵並輸出。
total_cross_entropy = sess.run(
cross_entropy, feed_dict=)
print ("after %d training step(s), cross entropy on all data is % g" % (i, total_cross_entropy))
'''輸出結果:
'''print sess.run(w1)
print sess.run(w2)
'''在訓練之後神經網路引數的值:
'''上面的程式實現了訓練神經網路的全部過程。從中可以總結出訓練神經網路的過程可以分為以下3步:
1、定義神經網路的結構和前向傳播的過程。
2、定義損失函式以及選擇反向傳播優化的演算法。
3、生成會話(tf.session)並且在訓練資料上反覆執行反向傳播優化演算法。
無論神經網路的結構如何變化,這3個步驟是不變的
Tensorflow卷積神經網路
卷積神經網路 convolutional neural network,cnn 是一種前饋神經網路,在計算機視覺等領域被廣泛應用.本文將簡單介紹其原理並分析tensorflow官方提供的示例.關於神經網路與誤差反向傳播的原理可以參考作者的另一篇博文bp神經網路與python實現.卷積是影象處理中一種...
Tensorflow 深層神經網路
維基百科對深度學習的定義 一類通過多層非線性變換對高複雜性資料建模演算法的合集.tensorflow提供了7種不同的非線性啟用函式,常見的有tf.nn.relu,tf.sigmoid,tf.tanh.使用者也可以自己定義啟用函式.3.1.1 交叉熵 用途 刻畫兩個概率分布之間的距離,交叉熵h越小,兩...
Tensorflow(三) 神經網路
1 前饋傳播 y x w1 b1 w2 b2 import tensorflow as tf x tf.constant 0.9,0.85 shape 1,2 w1 tf.variable tf.random normal 2,3 stddev 1,seed 1 name w1 w2 tf.vari...