微控制器數字濾波的演算法

2021-08-09 12:51:43 字數 3365 閱讀 2548

微控制器主要作用是控制外圍的器件,並實現一定的通訊和資料處理。但在某些特定場合,不可避免地要用到數**算,儘管微控制器並不擅長實現演算法和進行複雜的運算。下面主要是介紹如何用微控制器實現數字濾波。

在微控制器進行資料採集時,會遇到資料的隨機誤差,隨機誤差是由隨機干擾引起的,其特點是在相同條件下測量同一量時,其大小和符號會現無規則的變化而無法**,但多次測量的結果符合統計規律。為克服隨機干擾引起的誤差,硬體上可採用濾波技術,軟體上可採用軟體演算法實現數字濾波。濾波演算法往往是系統測控演算法的乙個重要組成部分,實時性很強。

採用數字濾波演算法克服隨機干擾的誤差具有以下優點:

1、數字濾波無需其他的硬體成本,只用乙個計算過程,可靠性高,不存在阻抗匹配問題。尤其是數字濾波可以對頻率很低的訊號進行濾波,這是模擬濾波器做不到的。

2、數字濾波使用軟體演算法實現,多輸入通道可共用乙個濾波程式,降低系統開支。

3、只要適當改變濾波器的濾波程式或運算,就能方便地改變其濾波特性,這對於濾除低頻干擾和隨機訊號會有較大的效果。

4、在微控制器系統中常用的濾波演算法有限幅濾波法、中值濾波法、算術平均濾波法、加權平均濾波法、滑動平均濾波等。

1.限幅濾波演算法

該運算的過程中將兩次相鄰的取樣相減,求出其增量,然後將增量的絕對值,與兩次取樣允許的最大差值a進行比較。a的大小由被測物件的具體情況而定,如果小於或等於允許的最大差值,則本次取樣有效;否則取上次取樣值作為本次資料的樣本。

演算法的程式**如下:

#define a //允許的最大差值

char data; //上一次的資料

char filter()

說明:限幅濾波法主要用於處理變化較為緩慢的資料,如溫度、物體的位置等。使用時,關鍵要選取合適的門限制a。通常這可由經驗資料獲得,必要時可通過實驗得到。

2.中值濾波演算法

該運算的過程是對某一引數連續取樣n次(n一般為奇數),然後把n次取樣的值按從小到大排列,再取中間值作為本次取樣值,整個過程實際上是乙個序列排序的過程。

演算法的程式**如下:

#define n11 //定義獲得的資料個數

char filter()

for(j=0;j

}return value_buff[(n-1)/2];

}

說明:中值濾波比較適用於去掉由偶然因素引起的波動和取樣器不穩定而引起的脈動干擾。若被測量值變化比較慢,採用中值濾波法效果會比較好,但如果資料變化比較快,則不宜採用此方法。

3.算術平均濾波演算法

該演算法的基本原理很簡單,就是連續取n次取樣值後進行算術平均。

演算法的程式**如下:

char filter()

return (char)(sum/n);

}

說明:算術平均濾波演算法適用於對具有隨機干擾的訊號進行濾波。這種訊號的特點是有乙個平均值,訊號在某一數值附近上下波動。訊號的平均平滑程度完全到決於n值。當n較大時,平滑度高,靈敏度低;當n較小時,平滑度低,但靈敏度高。為了方便求平均值,n一般取4、8、16、32之類的2的整數冪,以便在程式中用移位操作來代替除法。

4.加權平均濾波演算法

由於前面所說的「算術平均濾波演算法」存在平滑度和靈敏度之間的矛盾。為了協調平滑度和靈敏度之間的關係,可採用加權平均濾波。它的原理是對連續n次取樣值分別乘上不同的加權係數之後再求累加,加權係數一般先小後大,以突出後面若干取樣的效果,加強系統對引數變化趨勢的認識。各個加權係數均小於1的小數,且滿足總和等於1的結束條件。這樣加權運算之後的累加和即為有效取樣值。其中加權平均數字濾波的數學模型是:

式中:d為n個取樣值的加權平均值:xn-i為第n-i次取樣值;n為取樣次數;ci為加權係數。加權係數ci體現了各種取樣值在平均值中所佔的比例。一般來說取樣次數越靠後,取的比例越大,這樣可增加新取樣在平均值中所佔的比重。加權平均值濾波法可突出一部分訊號抵制另一部分訊號,以提高取樣值變化的靈敏度。

樣例程式**如下:

char codejq[n]=; //code陣列為加權係數表,存在程式儲存區

char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;

char filter()

for(count=0;count

sum+=value_buff[count]*jq[count];

return(char)(sum/sum_jq);

}

5.滑動平均濾波演算法

以上介紹和各種平均濾波演算法有乙個共同點,即每獲取乙個有效取樣值必須連續進行若干次取樣,當採速度慢時,系統的實時得不到保證。這裡介紹的滑動平均濾波演算法只取樣一次,將一次取樣值和過去的若干次取樣值一起求平均,得到的有效取樣值即可投入使用。如果取n個取樣值求平均,儲存區中必須開闢n個資料的暫存區。每新採集乙個資料便存入暫存區中,同時去掉乙個最老資料,儲存這n個資料始終是最新更新的資料。採用環型佇列結構可以方便地實現這種資料存放方式。

程式**如下:

char value_buff[n];

char i=0;

char filter()

6.低通濾波

將普通硬體rc低通濾波器的微分方程用差分方程來表求,變可以採用軟體演算法來模擬硬體濾波的功能,經推導,低通濾波演算法如下:

yn=a* xn+(1-a) *yn-1

式中 xn——本次取樣值

yn-1——上次的濾波輸出值;

,a——濾波係數,其值通常遠小於1;

yn——本次濾波的輸出值。

由上式可以看出,本次濾波的輸出值主要取決於上次濾波的輸出值(注意不是上次的取樣值,這和加權平均濾波是有本質區別的),本次取樣值對濾波輸出的貢獻是比較小的,但多少有些修正作用,這種演算法便模擬了具體有教大慣性的低通濾波器功能。濾波演算法的截止頻率可用以下式計算:

fl=a/2pit pi為圓周率3.14…

式中 a——濾波係數;

, t——取樣間隔時間;

例如:當t=0.5s(即每秒2次),a=1/32時;

fl=(1/32)/(2*3.14*0.5)=0.01hz

當目標引數為變化很慢的物理量時,這是很有效的。另外一方面,它不能濾除高於1/2取樣頻率的幹攪訊號,本例中取樣頻率為2hz,故對1hz以上的幹攪訊號應採用其他方式濾除,

低通濾波演算法程式於加權平均濾波相似,但加權係數只有兩個:a和1-a。為計算方便,a取一整數,1-a用256-a,來代替,計算結果捨去最低位元組即可,因為只有兩項,a和1-a,均以立即數的形式編入程式中,不另外設**。雖然取樣值為單元位元組(8位a/d)。為保證運算精度,濾波輸出值用雙位元組表示,其中乙個位元組整數,一位元組小數,否則有可能因為每次捨去尾數而使輸出不會變化。

設yn-1存放在30h(整數)和31h(小數)兩單元中,yn存放在32h(整數)和33h(小數)中。

微控制器數字濾波的演算法!

微控制器主要作用是控制外圍的器件,並實現一定的通訊和資料處理。但在某些特定場合,不可避免地要用到數 算,儘管微控制器並不擅長實現演算法和進行複雜的運算。下面主要是介紹如何用微控制器實現數字濾波。在微控制器進行資料採集時,會遇到資料的隨機誤差,隨機誤差是由隨機干擾引起的,其特點是在相同條件下測量同一量...

c語言 算術平均濾波法 微控制器數字濾波的演算法

微控制器主要作用是控制外圍的器件,並實現一定的通訊和資料處理。但在某些特定場合,不可避免地要用到數 算,儘管微控制器並不擅長實現演算法和進行複雜的運算。下面主要是介紹如何用微控制器實現數字濾波。在微控制器進行資料採集時,會遇到資料的隨機誤差,隨機誤差是由隨機干擾引起的,其特點是在相同條件下測量同一量...

微控制器常用濾波演算法

說明 假定從 8位 ad中讀取資料 如果是更高位的 ad可定義資料型別為 int 子程式為 get ad 一 限幅濾波法 又稱程式判斷濾波法 a 方法 根據經驗判斷,確定兩次取樣允許的最大偏差值 設為 a 每次檢測到新值時判斷 如果本次值與上次值之差 a,則本次值有效 如果本次值與上次值之差 a,則...