題目大意:給n個格仔染色,有紅藍綠黃四種顏色,其中紅綠格仔的顏色都必須是偶數個。求滿足條件的染色方案。
排列問題可以用指數型生成函式。
答案就是e2
x∗(e
x+e−
x2)2
中xn 的係數乘n!
化簡一下e4
x+2e
2x4 . 因為e
kx中x
n 的係數為kn
n!,所以an
s=4n
+2∗2
n4∗n
!∗n!
=4n+
2∗2n
4
#include
#include
#include
#include
#define p 10007
using namespace std;
int n,t;
int quickpow(int num,int
x) return ans;
}int main()
}
POJ 3734 Blocks 指數型生成函式
題意 有紅球,藍球,綠球,黃球,其中紅球和綠球都只能選擇偶數個,求選擇 n 個球擺成一排有多少種方案數.我們構造關於這些球的指數型生成函式 f x sum frac x i 其中 a 表示選擇 i 個球的不同排列數.紅與綠 1 frac frac frac 黃與藍 1 frac frac e x 那...
POJ 3734 Blocks 指數型生成函式
題意 有紅球,藍球,綠球,黃球,其中紅球和綠球都只能選擇偶數個,求選擇 n 個球擺成一排有多少種方案數.我們構造關於這些球的指數型生成函式 f x sum frac x i 其中 a 表示選擇 i 個球的不同排列數.紅與綠 1 frac frac frac 黃與藍 1 frac frac e x 那...
POJ 3734 Blocks 矩陣乘法
依舊是神奇的矩陣乘法,構思很巧妙,雖說看著很簡單,但是確實沒練過矩陣題,所以就沒這個意識去想到狀態轉移矩陣了。依舊是參考的別人的思路,也堅定了我要學好矩陣的決心。有四種顏色,其中紅色和綠色必須是偶數,那麼我們可以分四種狀態,一,紅為偶數,綠為偶數 二,紅為奇數,綠為偶數,三,紅為偶數,綠為奇數 四,...