中國新聞網 2016-08-17 來自:滴滴動向
kdd 大會(國際資料探勘與知識發現大會, acm sigkdd conference on knowledge discovery and data mining, 簡稱 kdd )是資料探勘領域的頂級國際會議,由 acm ( association of computing machinery ,計算機學會)的資料探勘及知識發現專委會( sigkdd )負責協調籌辦。
「交通擁堵是乙個大問題,中國也不例外,全球車輛密度最高的十個城市,前8個來自中國,後面緊隨東京和紐約,不僅如此,在北京高峰時段打到一輛計程車也不容易,要解決這一問題,就是將私家車共享,這也將改善交通擁堵、減少碳排放。」
葉傑平在kdd演講時表示:「滴滴出行成立於2023年,目前提供計程車、專車、快車、順風車等業務,2023年3月,我們實現了新的里程碑,即日出行訂單量超過1000萬,相當於美國單日分享出行訂單總量的5到6倍。」
「滴滴最大資產是每天產生的大量出行大資料,我們每日處理超過70tb資料,90億次路徑規劃請求,90億次地圖定位以及10億次派單,這還是我們收購uber中國之前的資料。對我們來說,如何利用總量如此龐大的交通出行資料是個重大挑戰。」
「智慧型派單是滴滴運營的核心技術之一。每一秒,我們都要匹配成千上萬的乘客和司機。乘客和司機之間的距離或車程時間是衡量派單質量的主要指標。我們需要用到兩項關鍵的地圖技術,即路徑規劃劃和eta(預估任意起終點所需的行駛時間),來完成派單。」葉傑平說。
傳統方法一般通過路況和每段路的平均速度計算出時間,然後加上可能的等待時間,得到整體所需時間,而滴滴則是利用機器學習來計算時間,大幅提公升了使用者體驗。根據這一技術,目前滴滴出行平台上已經可以實時更新所剩餘的距離以及到達終點的時間。
葉傑平介紹:「我們用機器學習模型從海量的出行資料中尋找規律。最核心是找到解決eta問題最有效的機器學習模型以及特徵挖掘,剛開始為eta建模的時候我們花了很多時間去找特徵,現在我們準備不斷優化我們的模型,將預估的精度不斷提高,更好的服務使用者。」
對於供需平衡問題,葉傑平表示:「人們可能很難在高峰時段打到車,這就是供需不平衡導致的,對於供需不平衡,可能更好的解決方案是對供需情況進行**,以便提前對司機進行智慧型排程,比如我們**到某個區域將會有很大供需不平衡,我們將會派司機到這一區域,避免使用者乘車需求無法滿足。實現供需**將帶來三大好處,供需得到平衡、乘客用車體驗提公升,以及司機收入增加。」
針對打車難的另一種解決辦法是拼車。「拼車降低了人們的出行成本和汽車燃油成本,但關鍵問題是,需要將所有乘客多耗費的時間最小化。很明顯,乘客之間的路線越相似,多出的時間就越少。此外,如何進行拼車定價也是個問題,關鍵是計算每單的預期利潤,如果預期利潤很高,我們將給予較高的折扣。這實際上也是個機器學習的問題。」
本次kdd會議上,葉傑平還透露公司正在研發一款名為「九霄」的視覺化系統,「該系統可以呈現過去發生了什麼以及正在發生什麼,比如告訴我們**有交通擁堵以及當前的供需情況等。」
據悉,滴滴研究院是滴滴出行全新的創新性研究機構,也是滴滴出行的「大腦」。未來一切有助於提高移動出行效率的技術創新,都將在這裡孵化出來。
目前,滴滴研究院的研究方向包括:機器學習、計算機視覺、人工智慧、資料探勘、最優化理論、分布式計算等。滴滴研究院與業務線緊密結合,每一項研究成果都能以最快的速度應用到相應的產品上,給千萬使用者帶去便捷。
滴滴出行2018程式設計題
程式設計題 cidr去重 時間限制 1秒 空間限制 65536k 無類別域間路由 cidr 是乙個用於對ipv4位址進行分類表述的方法。cidr 路由描述的ip位址組的子網mask長度是可變長度,例如10.0.0.0 22 表示前22位和10.0.0.0相同的網路位址都被覆蓋,22包含了10.0這前...
leetcode 滴滴 滴滴出行招資料分析實習生
滴滴出行 小桔車服平台招募商業分析實習生 你可能承擔的工作職責 1 支援相關專案的經營分析工作,週期性更新監控報表,對專案經營狀況進行分析,發現並定位業務問題 2 基於業務分析的發現,參與相關策略制定,解決業務中存在的問題 3 全流程參與專案,協助團隊推進專案的試點及在全國範圍的落地 4 支援部門其...
Vue2 0 仿滴滴出行專案
最近,各大社群出現很多小夥伴的vue專案,趁著這股熱潮我也用vue擼了乙個滴滴出行的專案。元件庫 mint ui 有一些元件特別好用,方便快速開發 字型庫vue awasome 完美支援font awasome,此外還可以自定義元件 css動畫庫 就我目前實現的功能來看,核心元件有定位元件 位址選擇...