註明出處,摘自
(1) n條直線最多分平面問題
題目大致如:n條直線,最多可以把平面分為多少個區域。
析:可能你以前就見過這題目,這充其量是一道初中的思考題。但乙個型別的題目還是從簡單的入手,才容易發現規律。當有n-1條直線時,平面最多被分成了f(n-1)個區域。則第n條直線要是切成的區域數最多,就必須與每條直線相交且不能有同一交點。這樣就會得到n-1個交點。這些交點將第n條直線分為2條射線和n-2條線斷。而每條射線和線斷將以有的區域一分為二。這樣就多出了2+(n-2)個區域。
故:f(n)=f(n-1)+n
=f(n-2)+(n-1)+n
……=f(1)+1+2+……+n
=n(n+1)/2+1
(2) 折線分平面(hdu2050)
根據直線分平面可知,由交點決定了射線和線段的條數,進而決定了新增的區域數。當n-1條折線時,區域數為f(n-1)。為了使增加的區域最多,則折線的兩邊的線段要和n-1條折線的邊,即2*(n-1)條線段相交。那麼新增的線段數為4*(n-1),射線數為2。但要注意的是,折線本身相鄰的兩線段只能增加乙個區域。
故:f(n)=f(n-1)+4(n-1)+2-1
=f(n-1)+4(n-1)+1
=f(n-2)+4(n-2)+4(n-1)+2
……=f(1)+4+4*2+……+4(n-1)+(n-1)
=2n^2-n+1
(3) 封閉曲線分平面問題
題目大致如設有n條封閉曲線畫在平面上,而任何兩條封閉曲線恰好相交於兩點,且任何三條封閉曲線不相交於同一點,問這些封閉曲線把平面分割成的區域個數。
析:當n-1個圓時,區域數為f(n-1).那麼第n個圓就必須與前n-1個圓相交,則第n個圓被分為2(n-1)段線段,增加了2(n-1)個區域。
故: f(n)=f(n-1)+2(n-1)
=f(1)+2+4+……+2(n-1)
=n^2-n+2
(4)平面分割空間問題(hdu1290)
由二維的分割問題可知,平面分割與線之間的交點有關,即交點決定射線和線段的條數,從而決定新增的區域數。試想在三維中則是否與平面的交線有關呢?當有n-1個平面時,分割的空間數為f(n-1)。要有最多的空間數,則第n個平面需與前n-1個平面相交,且不能有共同的交線。即最多有n-1 條交線。而這n-1條交線把第n個平面最多分割成g(n-1)個區域。(g(n)為(1)中的直線分平面的個數)此平面將原有的空間一分為二,則最多增加g(n-1)個空間。
故:f=f(n-1)+g(n-1) ps:g(n)=n(n+1)/2+1
=f(n-2)+g(n-2)+g(n-1)
……=f(1)+g(1)+g(2)+……+g(n-1)
=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
=(n^3+5n)/6+1
杭電1276士兵佇列的訓練問題
杭電1276士兵佇列的訓練問題 本來這題想用直接的模擬法去解答,但一看資料為5000,也還是可以,可是模擬是用陣列的話無法直接去掉被刪除的元素,用鍊錶可以完全模擬,但是鍊錶操作比較麻煩,想盡量避免鍊錶操作的使用。所以本題就想到了用兩個鍊錶來回操作來進行模擬。首先定義兩個陣列s1,s2。s1先儲存所有...
母牛的故事(杭電2018)
母牛的故事 problem description 有一頭母牛,它每年年初生一頭小母牛。每頭小母牛從第四個年頭開始,每年年初也生一頭小母牛。請程式設計實現在第n年的時候,共有多少頭母牛?input 輸入資料由多個測試例項組成,每個測試例項佔一行,包括乙個整數n 0output 對於每個測試例項,輸出...
杭電 2067 小兔的棋盤
problem description 小兔的叔叔從外面旅遊回來給她帶來了乙個禮物,小兔高興地跑回自己的房間,拆開一看是乙個棋盤,小兔有所失望。不過沒過幾天發現了棋盤的好玩之處。從起點 0,0 走到終點 n,n 的最短路徑數是c 2n,n 現在小兔又想如果不穿越對角線 但可接觸對角線上的格點 這樣的...