給定乙個有向無環圖和乙個起始頂點上的一枚棋子,兩名選手交替的將這枚棋子沿有向邊進行移動,無法移 動者判負。事實上,這個遊戲可以認為是所有impartial combinatorial games的抽象模型。
也就是說,任何乙個icg都可以通過把每個局面看成乙個頂點,對每個局面和它的子局面連一條有向邊來抽象成這個「
有向圖 遊戲」。下 面我們就在有向無環圖的頂點上定義sprague-grundy函式。首先定義mex(minimal excludant)運算,這是施加於乙個集合的運算,表示最小的不屬於這個集合的
非負整數
。例如mex=3、mex=0、mex{}=0。
對於乙個給定的有向無環圖,定義關於圖的每個頂點的sprague-grundy函式g如下:g(x)=mex。
來看一下sg函式的性質。首先,所有的terminal position所對應的頂點,也就是沒有出邊的頂點,其sg值為0,因為它的後繼集合是
空集 。然後對於乙個g(x)=0的頂點x,它的所有前驅y都滿足 g(y)!=0。對於乙個g(x)!=0的頂點,必定存在乙個後繼y滿足g(y)=0。
以上這三句話表明,頂點x所代表的postion是p-position當且僅當g(x)=0(跟p-positioin/n-position的 定義的那三句話是完全對應的)。我們通過計算有向無環圖的每個頂點的sg值,就可以對每種局面找到必勝策略了。但sg函式的用途遠沒有這樣簡單。如果將有 向圖遊戲變複雜一點,比如說,
有向圖 上並不是只有一枚棋子,而是有n枚棋子,每次可以任選一顆進行移動,這時,怎樣找到必勝策略呢?
讓我們再來考慮一下頂點的sg值的意義。當g(x)=k時,表明對於任意乙個0<=inim遊戲
, nim遊戲的規則就是:每次選擇一堆數量為k的石子,可以把它變成0、變成1、……、變成k-1,但絕對不能保持k不變。這表明,如果將n枚棋子所在的頂 點的sg值看作n堆相應數量的石子,那麼這個
nim遊戲
的每個必勝策略都對應於原來這n枚棋子的必勝策略!
對於n個棋子,設它們對應的頂點的sg值分別為(a1,a2,…,an),再設局面(a1,a2,…,an)時的
nim遊戲
的一種必勝策略是把ai 變成k,那麼原遊戲的一種必勝策略就是把第i枚棋子移動到乙個sg值為k的頂點。這聽上去有點過於神奇——怎麼繞了一圈又回到
nim遊戲
上了。其實我們還是只要證明這種多棋子的
有向圖 遊戲的局面是p-position當且僅當所有棋子所在的位置的sg函式的
異或 為0。這個證明與上節的bouton』s theorem幾乎是完全相同的,只需要適當的改幾個名詞就行了。
剛才,我為了使問題看上去更容易一些,認為n枚棋子是在乙個
有向圖 上移動。但如果不是在乙個有向圖上,而是每個棋子在乙個有向圖上,每次可以任選乙個棋子(也就是任選乙個有向圖)進行移動,這樣也不會給結論帶來任何變化。
所以我們可以定義
有向圖 遊戲的和(sum of graph games):設g1、g2、……、gn是n個有向圖遊戲,定義遊戲g是g1、g2、……、gn的和(sum),遊戲g的移動規則是:任選乙個子遊戲gi 並移動上面的棋子。sprague-grundy theorem就是:g(g)=g(g1)^g(g2)^…^g(gn)。也就是說,遊戲的和的sg
函式值 是它的所有子遊戲的sg函式值的
異或 。
再考慮在本文一開頭的一句話:任何乙個icg都可以抽象成乙個有向圖遊戲。所以「sg函式」和「遊戲的和」的概念就不是侷限於有向圖遊戲。我們給每 個icg的每個position定義sg值,也可以定義n個icg的和。所以說當我們面對由n個遊戲組合成的乙個遊戲時,只需對於每個遊戲找出求它的每個 局面的sg值的方法,就可以把這些sg值全部看成nim的石子堆,然後依照找nim的必勝策略的方法來找這個遊戲的必勝策略了!
回到本文開頭的問題。有n堆石子,每次可以從第1堆石子裡取1顆、2顆或3顆,可以從第2堆石子裡取奇數顆,可以從第3堆及以後石子裡取任意顆…… 我們可以把它看作3個子遊戲,第1個子遊戲只有一堆石子,每次可以取1、2、3顆,很容易看出x顆石子的局面的sg值是x%4。第2個子遊戲也是只有一堆 石子,每次可以取奇數顆,經過簡單的畫圖可以知道這個遊戲有x顆石子時的sg值是x%2。第3個遊戲有n-2堆石子,就是乙個
nim遊戲
。對於原遊戲的每 個局面,把三個子遊戲的sg值
異或 一下就得到了整個遊戲的sg值,然後就可以根據這個sg值判斷是否有必勝策略以及做出決策了。其實看作3個子遊戲還是保 守了些,乾脆看作n個子遊戲,其中第1、2個子遊戲如上所述,第3個及以後的子遊戲都是「1堆石子,每次取幾顆都可以」,稱為「任取石子遊戲」,這個超簡 單的遊戲有x顆石子的sg值顯然就是x。其實,n堆石子的
nim遊戲
本身不就是n個「任取石子遊戲」的和嗎?
所以,對於我們來說,sg函式與「遊戲的和」的概念不是讓我們去組合、製造稀奇古怪的遊戲,而是把遇到的看上去有些複雜的遊戲試圖分成若干個子游 戲,對於每個比原遊戲簡化很多的子遊戲找出它的sg函式,然後全部
異或 起來就得到了原遊戲的sg函式,就可以解決原遊戲了。
組合遊戲 SG函式和SG定理
在介紹sg函式和sg定理之前我們先介紹介紹必勝點與必敗點吧.必勝點和必敗點的概念 p點 必敗點,換而言之,就是誰處於此位置,則在雙方操作正確的情況下必敗。n點 必勝點,處於此情況下,雙方操作均正確的情況下必勝。必勝點和必敗點的性質 1 所有終結點是 必敗點 p 我們以此為基本前提進行推理,換句話說,...
組合遊戲 SG函式和SG定理
在介紹sg函式和sg定理之前我們先介紹介紹必勝點與必敗點吧.必勝點和必敗點的概念 p點 必敗點,換而言之,就是誰處於此位置,則在雙方操作正確的情況下必敗。n點 必勝點,處於此情況下,雙方操作均正確的情況下必勝。必勝點和必敗點的性質 1 所有終結點是 必敗點 p 我們以此為基本前提進行推理,換句話說,...
組合遊戲 SG函式和SG定理
在介紹sg函式和sg定理之前我們先介紹介紹必勝點與必敗點吧.必勝點和必敗點的概念 p點 必敗點,換而言之,就是誰處於此位置,則在雙方操作正確的情況下必敗。n點 必勝點,處於此情況下,雙方操作均正確的情況下必勝。必勝點和必敗點的性質 1 所有終結點是 必敗點 p 我們以此為基本前提進行推理,換句話說,...