貪心演算法思想:
顧名思義,貪心演算法總是作出在當前看來最好的選擇。也就是說貪心演算法並不從整體最優考慮,它所作出的選擇只是在某種意義上的區域性最優選擇。當然,希望貪心演算法得到的最終結果也是整體最優的。雖然貪心演算法不能對所有問題都得到整體最優解,但對許多問題它能產生整體最優解。如單源最短路經問題,最小生成樹問題等。在一些情況下,即使貪心演算法不能得到整體最優解,其最終結果卻是最優解的很好近似。
貪心演算法的基本要素:
1.貪心選擇性質。所謂貪心選擇性質是指所求問題的整體最優解可以通過一系列區域性最優的選擇,即貪心選擇來達到。這是貪心演算法可行的第乙個基本要素,也是貪心演算法與動態規劃演算法的主要區別。
動態規劃演算法通常以自底向上的方式解各子問題,而貪心演算法則通常以自頂向下的方式進行,以迭代的方式作出相繼的貪心選擇,每作一次貪心選擇就將所求問題簡化為規模更小的子問題。
對於乙個具體問題,要確定它是否具有貪心選擇性質,必須證明每一步所作的貪心選擇最終導致問題的整體最優解。
2. 當乙個問題的最優解包含其子問題的最優解時,稱此問題具有最優子結構性質。問題的最優子結構性質是該問題可用動態規劃演算法或貪心演算法求解的關鍵特徵。
貪心演算法的基本思路:
從問題的某乙個初始解出發逐步逼近給定的目標,以盡可能快的地求得更好的解。當達到演算法中的某一步不能再繼續前進時,演算法停止。
該演算法存在問題:
1. 不能保證求得的最後解是最佳的;
2. 不能用來求最大或最小解問題;
3. 只能求滿足某些約束條件的可行解的範圍。
實現該演算法的過程:
從問題的某一初始解出發;
while 能朝給定總目標前進一步 do
求出可行解的乙個解元素;
由所有解元素組合成問題的乙個可行解;
用揹包問題來介紹貪心演算法:
揹包問題:有乙個揹包,揹包容量是m=150。有7個物品,物品可以分割成任意大小。要求盡可能讓裝入揹包中的物品總價值最大,但不能超過總容量。
物品 a b c d e f g
重量 35 30 60 50 40 10 25
價值10 40 30 50 35 40 30
分析如下
目標函式: ∑pi最大
約束條件是裝入的物品總重量不超過揹包容量:∑wi<=m( m=150)。
(1)根據貪心的策略,每次挑選價值最大的物品裝入揹包,得到的結果是否最優?
(2)每次挑選所佔重量最小的物品裝入是否能得到最優解?
(3)每次選取單位重量價值最大的物品,成為解本題的策略。
值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於揹包問題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
貪心策略:選取價值最大者。反例:
w=30
物品:a b c
重量:28 12 12
價值:30 20 20
根據策略,首先選取物品a,接下來就無法再選取了,可是,選取b、c則更好。
(2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。
(3)貪心策略:選取單位重量價值最大的物品。反例:
w=30
物品:a b c
重量:28 20 10
價值:28 20 10
根據策略,三種物品單位重量價值一樣,程式無法依據現有策略作出判斷,如果選擇a,則答案錯誤。
所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的物件是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的機率正確)。
貪心演算法的設計思想
貪心演算法在解決問題的策略上目光短淺,只根據當前已有的資訊就做出選擇,而且一旦做出了選擇,不管將來有什麼結果,這個選擇都不會改變。換言之,貪心法並不是從整體最優考慮,它所做出的選擇只是在某種意義上的區域性最優。貪心演算法對於大部分的優化問題都能產生最優解,但不能總獲得整體最優解,通常可以獲得近似最優...
演算法設計思想之「貪心演算法」
輸入 coins 1,2,5 amount 11 輸出 3 解釋 11 5 5 1 輸入 coins 1,3,4 amount 6 輸出 3 解釋 6 4 1 1 1.1 題目描述 1.2 解題思路輸入 g 1,2,3 s 1,1 輸出 1 解釋 你有三個孩子和兩塊小餅乾,3個孩子的胃口值分別是 1...
四 貪心演算法基本思想
貪心演算法基本思想 性質 貪心選擇性質和最優子結構性質。如果乙個問題同時具備這兩個性質,那麼這個問題可以用貪心演算法求得整體最優解。1 貪心選擇性質 指所求問題的最優解可以通過一系列區域性最優解來達到。2 最優子結構性質 當乙個問題的最優解包含其子結構的最優解,稱此問題具有最優子結構性質。基本思想 ...