貝塞爾曲線 總結

2021-06-19 14:39:26 字數 757 閱讀 8250

bézier curve(貝塞爾曲線)是應用於二維圖形應用程式的

數學曲線

。曲線定義:起始點、終止點(也稱錨點)、控制點。通過調整控制點,貝塞爾曲線的形狀會發生變化。

1962

年,法國數學家pierre bézier第乙個研究了這種

向量繪製曲線的方法,並給出了詳細的計算公式,因此按照這樣的公式繪製出來的曲線就用他的姓氏來命名,稱為貝塞爾曲線。

以下公式中:

b(t)為t

時間下點的座標; p0

為起點,pn

為終點,pi

為控制點

一階貝塞爾曲線(線段

):意義:由 p0 至 p1 的連續點, 描述的一條線段

二階貝塞爾曲線

(拋物線

):原理:由 p0 至 p1 的連續點 q0,描述一條線段。 

由 p1 至 p2 的連續點 q1,描述一條線段。 

由 q0 至 q1 的連續點 b(t),描述一條二次貝塞爾曲線。

經驗:p1-p0為曲線在p0處的切線。

三階貝塞爾曲線:

通用公式:

高階貝塞爾曲線:

4階曲線:

5階曲線:

貝塞爾曲線

1.概述 貝塞爾曲線 b zier curve 又稱 貝茲曲線或貝濟埃曲線,是應用於二維圖形應用程式的數學曲線。一般的向量圖形 軟體通過它來精確畫出曲線,貝茲曲線由 線段與節點組成,節點是可拖動的支點,線段像可伸縮的皮筋,我們在繪圖工具上看到的鋼筆工具就是來做這種向量曲線的。貝塞爾曲線是計算機圖形學...

貝塞爾曲線

由於工作需要,最近在研究乙個類似qq訊息劃掉的效果 很多強迫症患者童鞋對這個簡直是愛不釋手,當然這個也包括我自己 貝塞爾曲線就是這樣的一條曲線,它是依據四個位置任意的點座標繪製出的一條 光滑曲線 在歷史上,研究貝塞爾曲線的人最初是按照已知曲線 引數方程 來確定四個點的思路設計出這種向量曲線繪製法。貝...

貝塞爾曲線

貝塞爾曲線在android中運用廣泛,可以用來繪製各類複雜曲線,因為貝塞爾曲線只需要指定控制點,就能繪製出特定的曲線。其次是做點和點的平滑過渡。為什麼可以做到如上兩點,看下面的講解 首先來說,貝塞爾曲線有階的概念,這個階可以理解為控制點,一階的控制點只有兩個。如上是一階的方程,其中t取值為0到1,可...