這裡是本人收集到的acm 模擬退火和dlx題目:
模擬退火題目(其實多數情況下用類似於爬山演算法的方法就可以解決了,沒必要遇到非最優解時專門設定乙個接受概率,詳情可以參考後續上傳的題解):
1.poj 1379
題目:2.poj 2069
題目:3.poj 3285
題目:dlx題目:
1.poj 1084
題目:2.poj 2676
題目:3.poj 3074
題目:4.poj 3076
題目:5.poj 3740
題目:
模擬退火演算法
w 模擬退火演算法的基本思想 將乙個優化問題比擬成乙個金屬物體,將優化問題的目標函式比擬成物體的能量,問題的解比擬成物體的狀態,問題的最優解比擬成能量最低的狀態,然後模擬金屬物體的退火過程,從乙個足夠高的溫度開始,逐漸降低溫度,使物體分子從高能量狀態緩慢的過渡到低能量狀態,直至獲得能量最小的理想狀態...
模擬退火合集
首次接觸模擬退火 看來還是挺神奇的。主要參考這篇博文 題意判斷多邊形內部能否容納乙個半徑為r的圓,即在有限的平面內找最優範圍。遺傳演算法的結果難以掌控,爬山演算法又沒法保證跳出區域性最優,所以基於貪心原則的模擬退火演算法還是值得考慮的。然後就是設定每次變化的步長和演化方式。該題可以從每條邊的中點開始...
模擬退火演算法
一些求解極值的問題不能通過函式特性直接求解,只能暴力列舉,但是單純的列舉效率不高,通過模擬退火演算法可以高效的找到答案。學習好博文 最小圓覆蓋 hdu 3007 buried memory 大意 給出一些點,求出能覆蓋他們的最小的圓。輸出圓心和半徑 include include include i...