布隆過濾器(bloom filter)是2023年由布隆提出的。它實際上是乙個很長的二進位制向量和一系列隨機對映函式。布隆過濾器可以用於檢索乙個元素是否在乙個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的演算法,缺點是有一定的誤識別率和刪除困難。
如果想要判斷乙個元素是不是在乙個集合裡,一般想到的是將所有元素儲存起來,然後通過比較確定。鍊錶,樹等等資料結構都是這種思路. 但是隨著集合中元素的增加,我們需要的儲存空間越來越大,檢索速度也越來越慢(o(n),o(logn))。不過世界上還有一種叫作雜湊表(又叫雜湊表,hash table)的資料結構。它可以通過乙個hash函式將乙個元素對映成乙個位陣列(bit array)中的乙個點。這樣一來,我們只要看看這個點是不是1就知道可以集合中有沒有它了。這就是布隆過濾器的基本思想。
hash面臨的問題就是衝突。假設hash函式是良好的,如果我們的位陣列長度為m個點,那麼如果我們想將衝突率降低到例如 1%, 這個雜湊表就只能容納m / 100個元素。顯然這就不叫空間效率了(space-efficient)了。解決方法也簡單,就是使用多個hash,如果它們有乙個說元素不在集合中,那肯定就不在。如果它們都說在,雖然也有一定可能性它們在說謊,不過直覺上判斷這種事情的
概率是比較低的。
相比於其它的資料結構,布隆過濾器在空間和時間方面都有巨大的優勢。布隆過濾器儲存空間和插入/查詢時間都是
常數。另外, hash函式相互之間沒有關係,方便由硬體並行實現。布隆過濾器不需要儲存元素本身,在某些對保密要求非常嚴格的場合有優勢。
布隆過濾器可以表示全集,其它任何資料結構都不能; k和
m相同,使用同一組hash函式的兩個布隆過濾器的交並差運算可以使用位操作進行。
布隆過濾器
但是布隆過濾器的缺點和優點一樣明顯。誤算率是其中之一。隨著存入的元素數量增加,誤算率隨之增加。但是如果元素數量太少,則使用雜湊表足矣。
另外,一般情況下不能從布隆過濾器中刪除元素. 我們很容易想到把位列陣變成整數陣列,每插入乙個元素相應的計數器加1, 這樣刪除元素時將計數器減掉就可以了。然而要保證安全的刪除元素並非如此簡單。首先我們必須保證刪除的元素的確在布隆過濾器裡面. 這一點單憑這個過濾器是無法保證的。另外計數器迴繞也會造成問題。
在降低誤算率方面,有不少工作,使得出現了很多布隆過濾器的變種。
布隆過濾器
布隆過濾器的概念 如果想要判斷乙個元素是不是在乙個集合裡,一般想到的是將所有元素儲存起來,然後通過比較確定。鍊錶,樹等等資料結構都是這種思路.但是隨著集合中元素的增加,我們需要的儲存空間越來越大,檢索速度也越來越慢 o n o logn 不過世界上還有一種叫作雜湊表 又叫 雜湊表,hash tabl...
布隆過濾器
如果想判斷乙個元素是不是在乙個集合裡,一般想到的是將集合中所有元素儲存起來,然後通過比較確定。鍊錶 樹 雜湊表 又叫雜湊表,hash table 等等資料結構都是這種思路。但是隨著集合中元素的增加,我們需要的儲存空間越來越大。同時檢索速度也越來越慢。bloom filter 是一種空間效率很高的隨機...
布隆過濾器
布隆過濾器 的乙個好處就是可以乙個bit表示乙個資料,下面有乙個python的開源庫 建構函式 class pybloomfilter.bloomfilter capacity int,error rate float,filename string 這個filename是生成的bloomfilte...