剛寫了乙個計算幾何的模板,這樣可以減少很多的函式,實現起來也很清楚,以後自己就這樣寫好了……
// 常用計算
#define vector point
struct point
};vector operator + ( vector a, vector b )
vector operator - ( vector a, vector b )
vector operator >> ( vector a, double a )
double operator * ( vector a, vector b )
double operator | ( vector a, vector b )
double operator ! ( vector a )
double operator ^ ( vector a, vector b )
計算幾何常用演算法介紹
計算幾何常用演算法介紹 1.向量減法 設二維向量 p x1,y1 q x2,y2 則向量減法定義為 p q x1 x2 y1 y2 顯然有性質 p q q p 如不加說明,下面所有的點都看作向量,兩點的減法就是向量相減 2.向量叉積 設向量p x1,y1 q x2,y2 則向量叉積定義為 p q x...
計算幾何 凸包演算法
凸包演算法總結 凸包是指覆蓋平面座標系內若干點的面積最小的凸多邊形。求凸包的第一步是確定 凸包的定點都在給定的點中。通過幾何方法反證很容易得到這一結論。所以,只要從所有點中挑選若干正確的點,按順序 順時針或逆時針 排列,就相當與求得了凸包。計算幾何中的凸包問題程式 graham演算法 include...
計算幾何常用演算法 ACM
複製自 1.向量減法 設二維向量 p x1,y1 q x2,y2 則向量減法定義為 p q x1 x2 y1 y2 顯然有性質 p q q p 如不加說明,下面所有的點都看作向量,兩點的減法就是向量相減 2.向量叉積 設向量p x1,y1 q x2,y2 則向量叉積定義為 p q x1 y2 x2 ...