堆 棧 記憶體(二)

2021-04-09 09:36:26 字數 1402 閱讀 3904

堆(heap)和棧(stack)是c/c++程式設計不可避免會碰到的兩個基本概念。首先,這兩個概念都可以在講資料結構的書中找到,他們都是基本的資料結構,雖然棧更為簡單一些。

在具體的c/c++程式設計框架中,這兩個概念並不是並行的。對底層機器**的研究可以揭示,棧是機器系統提供的資料結構,而堆則是c/c++函式庫提供的。

具體地說,現代計算機(序列執行機制),都直接在**底層支援棧的資料結構。這體現在,有專門的暫存器指向棧所在的位址,有專門的機器指令完成資料入棧出棧的操作。

機制的特點是效率高,支援的資料有限,一般是整數,指標,浮點數等系統直接支援的資料型別,並不直接支援其他的資料結構。因為棧的這種特點,對棧的使用在程式中是非常頻繁的。對子程式的呼叫就是直接利用棧完成的。機器的call指令裡隱含了把返回位址推入棧,然後跳轉至子程式位址的操作,而子程式中的ret指令則隱含從堆疊中彈出返回位址並跳轉之的操作。c/c++中的自動變數是直接利用棧的例子,這也就是為什麼當函式返回時,該函式的自動變數自動失效的原因。

和棧不同,堆的資料結構並不是由系統(無論是機器系統還是作業系統)支援的,而是由函式庫提供的。基本的malloc/realloc/free函式維護了一套內部的堆資料結構。當程式使用這些函式去獲得新的記憶體

空間時,這套函式首先試圖從內部堆中尋找可用的記憶體空間,如果沒有可以使用的記憶體空間,則試圖利用系統呼叫來動態增加程式資料段的記憶體大小,新分配得到的空間首先被組織進內部堆中去,然後再以適當的形式返回給呼叫者。當程式釋放分配的記憶體空間時,這片記憶體空間被返回內部堆結構中,可能會被適當的處理(比如和其他空閒空間合併成更大的空閒空間),以更適合下一次記憶體分配申請。這套複雜的分配機制實際上相當於乙個記憶體分配的緩衝池(cache),使用這套機制有如下若干原因:

1. 系統呼叫可能不支援任意大小的記憶體分配。有些系統的系統呼叫只支援固定大小及其倍數的記憶體請求(按頁分配);這樣的話對於大量的小記憶體分類來說會造成浪費。

2. 系統呼叫申請記憶體可能是代價昂貴的。系統呼叫可能涉及使用者態和核心態的轉換。

3. 沒有管理的記憶體分配在大量複雜記憶體的分配釋放操作下很容易造成記憶體碎片。

堆和棧的對比

從以上知識可知,

·              棧是系統提供的功能,特點是快速高效,缺點是有限制,資料不靈活;而堆是函式庫提供的功能,特點是靈活方便,資料適應面廣泛,但是效率有一定降低。

·             棧是系統資料結構,對於程序/執行緒是唯一的;堆是函式庫內部資料結構,不一定唯一。不同堆分配的記憶體無法互相操作。

·             棧空間分靜態分配和動態分配兩種。靜態分配是編譯器完成的,比如自動變數(auto)的分配。動態分配由malloca函式完成。棧的動態分配無需釋放(是自動的),也就沒有釋放函式。為可移植的程式起見,棧的動態分配操作是不被鼓勵的!堆空間的分配總是動態的,雖然程式結束時所有的資料空間都會被釋放回系統,但是精確的申請記憶體/釋放記憶體匹配是良好程式的基本要素。

記憶體堆疊結構

只解釋下小端模式,現代計算機通常使用的一種記憶體排列格式 push ebp 儲存上乙個呼叫的棧幀資訊 esp 4 mov ebp,esp push ebx 再分配一些空間,esp 4 mov byte ptr ebp 4 63h c 堆疊上賦值 mov byte ptr ebp 3 6dh m mo...

堆 棧 記憶體溢位

堆與棧的區別,遞迴沒有退出條件會怎樣,系統怎麼判定棧溢位?1,管理方式不同 棧編譯器自動管理,無需程式設計師手工控制 而堆空間的申請釋放工作由程式設計師控制,容易產生記憶體洩漏。2,空間大小不同 棧是一塊連續的記憶體,棧頂的位址和棧底的位址是系統預先規定好的,當申請空間大於剩餘空間,提示溢位 堆是不...

陣列記憶體堆疊

陣列 用於儲存一組同一資料型別資料的容器 陣列會對放入其中的資料自動編號,編號是從0開始的 下標 定義格式 資料型別 陣列名 new 資料型別 陣列的大小 可以先宣告再初始化 int arr new int 5 定義了乙個最多能儲存5的整數的陣列 arr 3 4 arr 3 通過陣列名 下標 的形式...