模組匯入
import numpy as np
import gaosi as gs
**"""
本函式通過建立增廣矩陣,並呼叫高斯列主元消去法模組進行求解。
"""import numpy as np
import gaosi as gs
shape = int(input('請輸入擬合函式的次數:'))
x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])
y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2])
data =
for i in range(shape*2+1):
if i != 0:
data.append(np.sum(x**i))
else:
data.append(len(x))
b =
for i in range(shape+1):
if i != 0:
b.append(np.sum(y*x**i))
else:
b.append(np.sumwww.cppcns.com(y))
b = np.array(b).reshape(shape+1,1)
n = np.zeros([shape+1,shape+1])
for i in range(shape+1):
for j in range(shape+1):
n[i][j] = data[i+j]
result = gs.handle(n,b)
if not result:
print('增廣矩陣求解失敗!')
exit()
fun='f(x) = '
for i in range(len(result)):
if type(result[i]) == type(''):
print('存在自由變數!')
fun = fun + str(result[i])
elif i == 0:
fun = fun + ''.format(result[i])
else:
fun = fun + '+*x^'.format(result[i],i)
print('求得次擬合函式為:'.format(shape))
print(fun)
高斯模組
# 匯入 numpy 模組
import numpy as np
# 行交換
def swap_row(matrix, i, j):
m, n = matrix.shape
if i >= m or j >= m:
print(www.cppcns.com'錯誤! : 行交換超出範圍 ...')
else:
matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy()
return matrix
# 變成階梯矩陣
def matrix_change(matrix):
m, n = matrix.shape
main_factor =
main_col = main_row = 0
while main_row < m and main_col < n:
# 選擇進行下一次主元查詢的列
main_row = len(main_factor)
# 尋找列中非零的元素
not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0]
# 如果該列向下全部資料為零,則直接跳過列
if len(not_zeros) == 0:
main_col += 1
continue
else:
# 將主元列號儲存在列表中
main_factor.append(main_col)
# 將第乙個非零行交換至最前
if not_zeros[0] != [0]:
matrix = swap_row(matrix,main_row,main_row+not_zeros[0])
# 將該列主元下方所有元素變為零
if main_row < m-1:
for k in range(main_row+1,m):
a = float(matrix[k, main_col] / matrix[main_row, main_col])
matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_r main_col]
main_col += 1
return matrix,main_factor
# 回代求解
def back_solve(matrix, main_factor):
# 判斷是否有解
if len(main_factor) == 0:
print('主元錯誤,無主元! ...')
return none
m, n = matrix.shape
if main_factor[-1] == n - 1:
print('無解! ...')
return none
# 把所有的主元元素上方的元素變成0
for i in range(len(main_factor) - 1, -1, -1):
factor = matrix[i, main_factor[i]]
matrix[i] = matrix[i] / float(factor)
for j in range(i):
times = matrix[j, main_factor[i]]
matrix[j] = matrix[j] - float(times) * matrix[i]
# 先看看結果對不對
return matrix
# 結果列印
def print_result(matrix, main_factor):
if matrix is none:
print('階梯矩陣為空! ...')
return none
m, n = matrix.shape
result = [''] * (n - 1)
main_factor = list(main_factor)
for i in range(n - 1):
# 如果不是主元列,則為自由變數
if i not in main_factor:
result[i] = '(free var)'
# 否則是主元變數,從對應的行,將主元變數表示成非主元變數的線性組合
else:
# row_of_main表示該主元所在的行
row_of_main = main_factor.index(i)
result[i] = matrix[row_of_main, -1]
return result
# 得到簡化的階梯矩陣和主元列
def handle(matrix_a, matrix_b):
# 拼接成增廣矩陣
matrix_01 = np.hstack([matrwww.cppcns.comix_a, matrix_b])
matrix_01, main_factor = matrix_change(matrix_01)
matrix_01 = back_solve(matrix_01, main_factor)
result = print_result(matrix_01, main_factor)
return result
if __name__ == '__main__':
a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)
b = np.array([[4],[6],[5]],dtype=float)
a = handle(a, b)
本文標題: python實現曲線擬合的最小二乘法
本文位址:
Python曲線擬合
z1 np.polyfit x,y,5 用3次多項式擬合 p1 np.poly1d z1 print p1 在螢幕上列印擬合多項式 yvals p1 x 也可以使用yvals np.polyval z1,x plot1 plt.plot x,y,k.markersize 16,label origi...
python曲線擬合
python中曲線擬合 乙個是numpy中的polyfit 函式,多項式擬合,給定變數x y 多項式次數,返回值為多項式的一維係數array 另乙個是scipy的 optimize 模組中的 curve fit 函式,可由自己定義擬合函式,更通用 給定變數x y 擬合函式,返回值有兩個,popt是擬...
最小二乘曲線擬合matlab實現
對如下圖所示的加雜訊曲線,如何進行曲線擬合呢?我們可以採用 階多項式去逼近它 係數隨機資料的產生如下 function y truth,y observed unknown model1 x y truth 0.001 x.4 x.3 5 x.2 0.5 x 4階的資料 y observed y t...