一、基本概念
在電腦科學中,分治法是一種很重要的演算法。字面上的解釋是「分而治之」,就是把乙個複雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合併。這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸併排序),傅利葉變換(快速傅利葉變換)……
任何乙個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問 題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接 解決乙個規模較大的問題,有時是相當困難的。
二、基本思想及策略
分治法的設計思想是:將乙個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
分治策略是:對於乙個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞迴地解這些子問題,然後將各子問題的解合併得到原問題的解。這種演算法設計策略叫做分治法。
如果原問題可分割成k個子問題,1這自然導致遞迴過程的產生。分治與遞迴像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
三、分治法適用的情況
分治法所能解決的問題一般具有以下幾個特徵:
1) 該問題的規模縮小到一定的程度就可以容易地解決
2) 該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。
3) 利用該問題分解出的子問題的解可以合併為該問題的解;
4) 該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
第一條特徵是絕大多數問題都可以滿足的,因為問題的計算複雜性一般是隨著問題規模的增加而增加;
第二條特徵是應用分治法的前提它也是大多數問題可以滿足的,此特徵反映了遞迴思想的應用;、
第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮用貪心法或動態規劃法。
第四條特徵涉及到分治法的效率,如果各子問題是不獨立的則分治法要做許多不必要的工作,重複地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
四、分治法的基本步驟
分治法在每一層遞迴上都有三個步驟:
step1 分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
step2 解決:若子問題規模較小而容易被解決則直接解,否則遞迴地解各個子問題
step3 合併:將各個子問題的解合併為原問題的解。
它的一般的演算法設計模式如下:
divide-and-conquer(p)
1. if |p|≤n0
2. then return(adhoc(p))
3. 將p分解為較小的子問題 p1 ,p2 ,...,pk
4. for i←1 to k
5. do yi ← divide-and-conquer(pi) △ 遞迴解決pi
6. t ← merge(y1,y2,...,yk) △ 合併子問題
7. return(t)
其中|p|表示問題p的規模;n0為一閾值,表示當問題p的規模不超過n0時,問題已容易直接解出,不必再繼續分解。adhoc(p)是該分治法中的基本 子演算法,用於直接解小規模的問題p。因此,當p的規模不超過n0時直接用演算法adhoc(p)求解。演算法merge(y1,y2,...,yk)是該分治 法中的合併子演算法,用於將p的子問題p1 ,p2 ,...,pk的相應的解y1,y2,...,yk合併為p的解。
五、分治法的複雜性分析
乙個分治法將規模為n的問題分成k個規模為n/m的子問題去解。設分解閥值n0=1,且adhoc解規模為1的問題耗費1個單位時間。再設將原問題分解為 k個子問題以及用merge將k個子問題的解合併為原問題的解需用f(n)個單位時間。用t(n)表示該分治法解規模為|p|=n的問題所需的計算時間, 則有:
t(n)= k t(n/m)+f(n)
通過迭代法求得方程的解:
六、可使用分治法求解的一些經典問題
(1)二分搜尋
(2)大整數乘法
(3)strassen矩陣乘法
(4)棋盤覆蓋
(5)合併排序
(6)快速排序
(7)線性時間選擇
(8)最接近點對問題
(9)迴圈賽日程表
(10)漢諾塔
七、依據分治法設計程式時的思維過程
實際上就是類似於數學歸納法,找到解決本問題的求解方程公式,然後根據方程公式設計遞迴程式。
1、一定是先找到最小問題規模時的求解方法
2、然後考慮隨著問題規模增大時的求解方法
3、找到求解的遞迴函式式後(各種規模或因子),設計遞迴程式即可。
五大常用演算法之一 分治演算法
一 基本概念 在電腦科學中,分治法是一種很重要的演算法。字面上的解釋是 分而治之 就是把乙個複雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題 直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合併。這個技巧是很多高效演算法的基礎,如排序演算法 快速排序,歸併排序 傅利...
五大常用演算法之一 分治演算法
一 基本概念 在電腦科學中,分治法是一種很重要的演算法。字面上的解釋是 分而治之 就是把乙個複雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題 直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合併。這個技巧是很多高效演算法的基礎,如排序演算法 快速排序,歸併排序 傅利...
五大常用演算法之一 分治演算法
一 基本概念 在電腦科學中,分治法是一種很重要的演算法。字面上的解釋是 分而治之 就是把乙個複雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題 直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合併。這個技巧是很多高效演算法的基礎,如排序演算法 快速排序,歸併排序 傅利...