複習資料結構及演算法

2022-09-06 05:48:09 字數 4274 閱讀 2823

複習資料結構與演算法的一些知識收藏:

十大經典排序演算法

時間和空間複雜度

演算法(algorithm)是指用來運算元據、解決程式問題的一組方法。對於同乙個問題,使用不同的演算法,也許最終得到的結果是一樣的,但在過程中消耗的資源和時間卻會有很大的區別。

那麼我們應該如何去衡量不同演算法之間的優劣呢?

主要還是從演算法所占用的「時間」和「空間」兩個維度去考量。

因此,評價乙個演算法的效率主要是看它的時間複雜度和空間複雜度情況。然而,有的時候時間和空間卻又是「魚和熊掌」,不可兼得的,那麼我們就需要從中去取乙個平衡點。

下面我來分別介紹一下「時間複雜度」和「空間複雜度」的計算方式。

一、時間複雜度

我們想要知道乙個演算法的「時間複雜度」,很多人首先想到的的方法就是把這個演算法程式執行一遍,那麼它所消耗的時間就自然而然知道了。

這種方式可以嗎?當然可以,不過它也有很多弊端。

這種方式非常容易受執行環境的影響,在效能高的機器上跑出來的結果與在效能低的機器上跑的結果相差會很大。而且對測試時使用的資料規模也有很大關係。再者,並我們在寫演算法的時候,還沒有辦法完整的去執行呢。

因此,另一種更為通用的方法就出來了:「 大o符號表示法 」,即 t(n) = o(f(n))

我們先來看個例子:

for(i=1; i<=n; ++i)

通過「 大o符號表示法 」,這段**的時間複雜度為:o(n) ,為什麼呢?

在 大o符號表示法中,時間複雜度的公式是: t(n) = o( f(n) ),其中f(n) 表示每行**執行次數之和,而 o 表示正比例關係,這個公式的全稱是:演算法的漸進時間複雜度。

我們繼續看上面的例子,假設每行**的執行時間都是一樣的,我們用 1顆粒時間 來表示,那麼這個例子的第一行耗時是1個顆粒時間,第三行的執行時間是 n個顆粒時間,第四行的執行時間也是 n個顆粒時間(第二行和第五行是符號,暫時忽略),那麼總時間就是 1顆粒時間 + n顆粒時間 + n顆粒時間 ,即 (1+2n)個顆粒時間,即: t(n) =  (1+2n)*顆粒時間,從這個結果可以看出,這個演算法的耗時是隨著n的變化而變化,因此,我們可以簡化的將這個演算法的時間複雜度表示為:t(n) =  o(n)

為什麼可以這麼去簡化呢,因為大o符號表示法並不是用於來真實代表演算法的執行時間的,它是用來表示**執行時間的增長變化趨勢的。

所以上面的例子中,如果n無限大的時候,t(n) =  time(1+2n)中的常量1就沒有意義了,倍數2也意義不大。因此直接簡化為t(n) =  o(n) 就可以了。

常見的時間複雜度量級有:

上面從上至下依次的時間複雜度越來越大,執行的效率越來越低。

下面選取一些較為常用的來講解一下(沒有嚴格按照順序):

常數階o(1)

無論**執行了多少行,只要是沒有迴圈等複雜結構,那這個**的時間複雜度就都是o(1),如:

int i = 1;

int j = 2;

++i;

j++;

int m = i + j;

上述**在執行的時候,它消耗的時候並不隨著某個變數的增長而增長,那麼無論這類**有多長,即使有幾萬幾十萬行,都可以用o(1)來表示它的時間複雜度。

線性階o(n)

這個在最開始的**示例中就講解過了,如:

for(i=1; i<=n; ++i)

這段**,for迴圈裡面的**會執行n遍,因此它消耗的時間是隨著n的變化而變化的,因此這類**都可以用o(n)來表示它的時間複雜度。

對數階o(logn)

還是先來看**:

int i = 1;

while(i2;

}

從上面**可以看到,在while迴圈裡面,每次都將 i 乘以 2,乘完之後,i 距離 n 就越來越近了。我們試著求解一下,假設迴圈x次之後,i 就大於 2 了,此時這個迴圈就退出了,也就是說 2 的 x 次方等於 n,那麼 x = log2^n

也就是說當迴圈 log2^n 次以後,這個**就結束了。因此這個**的時間複雜度為:o(logn)

線性對數階o(nlogn)

線性對數階o(nlogn) 其實非常容易理解,將時間複雜度為o(logn)的**迴圈n遍的話,那麼它的時間複雜度就是 n * o(logn),也就是了o(nlogn)。

就拿上面的**加一點修改來舉例:

for(m=1; m1;

while(i2;}}

平方階o(n²)

平方階o(n²) 就更容易理解了,如果把 o(n) 的**再巢狀迴圈一遍,它的時間複雜度就是 o(n²) 了。

舉例:

for(x=1; i<=n; x++)

}

這段**其實就是巢狀了2層n迴圈,它的時間複雜度就是 o(n*n),即  o(n²) 

如果將其中一層迴圈的n改成m,即:

for(x=1; i<=m; x++)

}

那它的時間複雜度就變成了 o(m*n)

立方階o(n³)、k次方階o(n^k)

參考上面的o(n²) 去理解就好了,o(n³)相當於三層n迴圈,其它的類似。

除此之外,其實還有 平均時間複雜度、均攤時間複雜度、最壞時間複雜度、最好時間複雜度 的分析方法,有點複雜,這裡就不展開了。

二、空間複雜度

既然時間複雜度不是用來計算程式具體耗時的,那麼我也應該明白,空間複雜度也不是用來計算程式實際占用的空間的。

空間複雜度是對乙個演算法在執行過程中臨時占用儲存空間大小的乙個量度,同樣反映的是乙個趨勢,我們用 s(n) 來定義。

空間複雜度比較常用的有:o(1)、o(n)、o(n²),我們下面來看看:

空間複雜度 o(1)

如果演算法執行所需要的臨時空間不隨著某個變數n的大小而變化,即此演算法空間複雜度為乙個常量,可表示為 o(1)

舉例:

int i = 1;

int j = 2;

++i;

j++;

int m = i + j;

**中的 i、j、m 所分配的空間都不隨著處理資料量變化,因此它的空間複雜度 s(n) = o(1)

空間複雜度 o(n)

我們先看乙個**:

int m = new int[n]

for(i=1; i<=n; ++i)

這段**中,第一行new了乙個陣列出來,這個資料占用的大小為n,這段**的2-6行,雖然有迴圈,但沒有再分配新的空間,因此,這段**的空間複雜度主要看第一行即可,即 s(n) = o(n)

時間複雜度和空間複雜度一般是針對演算法而言,是衡量乙個演算法是否高效的重要標準。先糾正乙個誤區,時間複雜度並不是演算法執行的時間,再糾正乙個誤區,演算法不單單指氣泡排序之類的,乙個迴圈甚至是乙個判斷都可以稱之為演算法。其實理解起來並不衝突,八大排序甚至更多的演算法本質上也是通過各種迴圈判斷來實現的。

時間複雜度指演算法語句的執行次數。乙個演算法語句的執行次數最終都是可以通過函式f(n)來表示的,例如:

int x = 1;

while(x < 10)

這裡的x++就是演算法語句,其f(n)=10-x

for(int i = 0;i < n;i++)

}這裡的system.out.println就是演算法語句,其f(n)如下圖

int i = 0;

while(i < n)

i++即演算法語句,被執行次數為f(n)=n-i

理解了如何將演算法語句執行次數通過函式表示出來,時間複雜度一眼就看出來了,有以下幾條規則

1.選取f(n)係數最大的項,如果係數都是負數,就選常數,那麼時間複雜度是常數階o(1)

2.根據第一條拿到係數最大項後,將係數化為1,剩下的就是時間複雜度

3.乙個演算法可能有多條演算法語句,即可能有多個迴圈判斷,時間複雜度的計算考慮最壞情況,即取最大的。

根據以上3個規則,前面三個例子的時間複雜度分別為

空間複雜度就是乙個演算法在執行過程中臨時占用的儲存空間大小,換句話說就是被建立次數最多的變數,它被建立了多少次,那麼這個演算法的空間複雜度就是多少。舉個例子:

for(int i=0;i和int temp=0;

for(int i=0;i前者空間複雜度就是o(n),而後者空間複雜度就是o(1)常數階。很好理解,前者每迴圈一次都會重新建立乙個temp物件,而後者只在迴圈外面建立了乙個temp物件,每次迴圈只是給他不同的引用而已。所以有個規律,如果演算法語句中就有建立物件,那麼這個演算法的時間複雜度和空間複雜度一般一致,很好理解,演算法語句被執行了多少次就建立了多少物件

資料結構複習之 資料結構和演算法概念

資料結構就像是乙個催化劑,如果沒有原料是無用的,單是有了演算法就能幫演算法更快的實現任務 資料結構 是指相互之間存在一種或多種特定關係的資料元素 的集合,簡單地說是資料之間的各種關係的集合。程式設計 資料結構 演算法 解釋 如果要寫乙個程式,需要選擇乙個良好的資料結構,加上良好的解決問題的演算法 資...

資料結構及演算法

總所周知,程式的實質就是 對資料的表示,以及對資料的處理。資料要能被計算機處理,首先必須能夠儲存在計算機的記憶體中,這項任務就是資料的表示,其核心就是資料結構。對乙個實際問題的求解必須滿足實際處理的要求,這項任務就是資料處理,其核心是演算法。有這樣乙個著名公式 是誰提出的有點記不住了 資料結構 演算...

資料結構及演算法

最近常看到一些同行常提到資料結構和演算法,這個問題有時候面試會常常遇到,讓你說一下關於資料結構的理解,結常看到網上一些同行對資料結構的解釋和看法,差不多也都各有千秋吧 同時感覺好多人都對資料結構的理解不是很清楚,那怕是平時的開發過程中常用到資料結構及演算法,但是一但回答起這個問題來,感覺就是無從說起...