1import
tensorflow as tf
2import
numpy as np
3import
matplotlib.pyplot as plt
4def add_layer(inputs, in_size, out_size,activation_function=none):
5 weights =tf.variable(tf.random_normal([in_size, out_size]))
6 biases = tf.variable(tf.zeros([1, out_size]) + 0.1)
7 wx_plus_b = tf.matmul(inputs, weights) +biases
8if activation_function is
none:
9 outputs =wx_plus_b
10else
:11 outputs =activation_function(wx_plus_b)
12return
outputs
1314 x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
15 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
16 y_data=np.square(x_data)-0.5+noise
17 xs=tf.placeholder(tf.float32,[none,1],name='
x_input')
18 ys=tf.placeholder(tf.float32,[none,1],name='
y_input')
1920 l1=add_layer(xs,1,10,activation_function=tf.nn.relu) #
隱藏層21 prediction=add_layer(l1,10,1,activation_function=none) #
輸出層22 loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
23 reduction_indices=[1]))
24 train_step = tf.train.gradientdescentoptimizer(0.1).minimize(loss)
25 init =tf.global_variables_initializer()
26 sess =tf.session()
27sess.run(init)
28 fig = plt.figure() #
生成框架
29 ax=fig.add_subplot(1,1,1) #
連續性的畫圖
30 ax.scatter(x_data,y_data) #
用點的形式把真實的資料畫出來
31 plt.ion() #
用於連續顯示,不會show一下就停止顯示
32plt.show()
33for i in range(1000):
34 sess.run(train_step,feed_dict=)
35if i%50==0:
36print(sess.run(loss,feed_dict=))
37try
:38 ax.lines.remove(lines[0]) #
在中去除第一條線
39except
exception:
40pass
41 prediction_value = sess.run(prediction,feed_dict=)
42 lines=ax.plot(x_data,prediction_value,'
r-',lw=5) #
紅色,寬度為5的線,x,y軸的資料plot上去
43 plt.pause(0.1) #
暫停0.1s
結果視覺化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add layer inputs,input size,output size,activation function none weight...
Tensorfow 之 結果視覺化
安裝 中輸出結果視覺化模組 matplotlib import matplotlib.pyplot as plt使用上篇部落格的例子,在裡面新增了視覺化的部分,就可以將這先乏味的資料通通影象更直觀的檢視了。首先需要的是構建圖形,用散點圖描述真實資料之間的關係。每隔50次訓練重新整理一次圖形,用紅色 ...
高維聚類結果視覺化
利用sklearn包裡的birch演算法,以iris資料集,聚類結果視覺化 如下 import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples generator import make blobs ...