一、概念
時間複雜度是總運算次數表示式中受n的變化影響最大的那一項(不含係數)比如:一般總運算次數表示式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間複雜度就是o(2^n);
a=0,b<>0 =>o(n^3);
a,b=0,c<>0 =>o(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //迴圈了n*n次,當然是o(n^2)for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//迴圈了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間複雜度是不考慮係數的,所以也是o(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//迴圈了(1+2+3+...+n)≈(n^2)/2,當然也是o(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1)
//迴圈了
n-1≈n次,所以是o(n)
(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//
迴圈了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮係數,自然是o(n^3)
另外,在時間複雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)所以,log(2,n)=log(2,10)*lg(n),忽略掉係數,二者當然是等價的
二、計算方法
1.乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且乙個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
乙個演算法中的語句執行次數稱為語句頻度或時間頻度。記為t(n)。
2.一般情況下,演算法的基本操作重複執行的次數是模組n的某乙個函式f(n),因此,演算法的時間複雜度記做:t(n)=o(f(n))。隨著模組n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間複雜度越低,演算法的效率越高。
在計算時間複雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出t(n)的同數量級(它的同數量級有以下:1,log2n ,n ,nlog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若t(n)/f(n)求極限可得到一常數c,則時間複雜度t(n)=o(f(n))。
3.常見的時間複雜度
按數量級遞增排列,常見的時間複雜度有:
常數階o(1), 對數階o(log2n), 線性階o(n), 線性對數階o(nlog2n), 平方階o(n^2), 立方階o(n^3),..., k次方階o(n^k), 指數階o(2^n) 。
其中,
1.o(n),o(n^2), 立方階o(n^3),..., k次方階o(n^k) 為多項式階時間複雜度,分別稱為一階時間複雜度,二階時間複雜度。。。。
2.o(2^n),指數階時間複雜度,該種不實用
3.對數階o(log2n), 線性對數階o(nlog2n),除了常數階以外,該種效率最高
例:演算法:for(i=1;i<=n;++i)
}則有 t(n)= n^2+n^3,根據上面括號裡的同數量級,我們可以確定 n^3為t(n)的同數量級
則有f(n)= n^3,然後根據t(n)/f(n)求極限可得到常數c
則該演算法的 時間複雜度:t(n)=o(n^3)
四、定義:如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t(n),它是n的某一函式 t(n)稱為這一演算法的「時間複雜性」。
當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的「漸近時間複雜性」。
我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如果f(n)=o(n),那顯然成立f(n)=o(n^2),它給你乙個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,乙個問題本身也有它的複雜性,如果某個演算法的複雜性到達了這個問題複雜性的下界,那就稱這樣的演算法是最佳演算法。
「大o記法」:在這種描述中使用的基本引數是
n,即問題例項的規模,把複雜性或執行時間表達為n的函式。這裡的「o」表示量級 (order),比如說「二分檢索是 o(logn)的」,也就是說它需要「通過logn量級的步驟去檢索乙個規模為n的陣列」記法 o ( f(n) )表示當 n增大時,執行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,乙個低附加代價的o(n2)演算法在n較小的情況下可能比乙個高附加代價的 o(nlogn)演算法執行得更快。當然,隨著n足夠大以後,具有較慢上公升函式的演算法必然工作得更快。
o(1)
temp=i;i=j;j=temp;
以上三條單個語句的頻度均為1,該程式段的執行時間是乙個與問題規模n無關的常數。演算法的時間複雜度為常數階,記作t(n)=o(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是乙個較大的常數。此類演算法的時間複雜度是o(1)。
o(n^2)2.1.
交換i和j的內容
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++; (n^2次 )
解:t(n)=2n^2+n+1 =o(n^2)
2.2.
for (i=1;i
如何計算時間複雜度
求解演算法的時間複雜度的具體步驟是 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。計算基本語句的執行次數的數量級 只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能...
如何計算時間複雜度
定義 如果乙個問題的規模是n,解這一問題的某一演算法所需要的時間為t n 它是n的某一函式 t n 稱為這一演算法的 時間複雜性 當輸入量n逐漸加大時,時間複雜性的極限情形稱為演算法的 漸近時間複雜性 我們常用大o表示法表示時間複雜性,注意它是某乙個演算法的時間複雜性。大o表示只是說有上界,由定義如...
如何計算時間複雜度
一 概念時間複雜度是總運算次數表示式中受n的變化影響最大的那一項 不含係數 比如 一般總運算次數表示式類似於這樣 a 2 n b n 3 c n 2 d n lg n e n f a 0時,時間複雜度就是o 2 n a 0,b 0 o n 3 a,b 0,c 0 o n 2 依此類推eg 1 for...