斐波拉契博弈

2022-08-13 19:39:17 字數 596 閱讀 6648

problem description

1堆石子有n個,兩人輪流取.先取者第1次可以取任意多個,但不能全部取完.以後每次取的石子數不能超過上次取子數的2倍。取完者勝.先取者負輸出"second win".先取者勝輸出"first win".

input

輸入有多組.每組第1行是2<=n<2^31. n=0退出.

output

先取者負輸出"second win". 先取者勝輸出"first win". 

參看sample output.

sample input213

10000

0sample output

second win

second win

first win

(適用於特殊的題型)

1 #include2 #include3

using

namespace

std;

4int

main()518

if (!mark) cout << "

first win

"<2021

return0;

22 }

斐波那契博弈

斐波那契博弈 有一堆物品,兩人輪流取物品,先手最少取乙個,至多無上限,但不能把物品取完,之後每次取的物品數不能超過上一次取的物品數的二倍且至少為一件,取走最後一件物品的人獲勝。結論是 先手勝當且僅當n不是斐波那契數 n為物品總數 如hdu2516 include include include us...

斐波那契博弈?!

有一堆石子有n顆,雙方輪流取石子。先手第一次可以拿至少乙個但是不能拿完 接下來每次取的石子至少為1個,至多為上一次拿的兩倍 問先手是否有必勝策略 觀 da 察 biao 發現先手必敗當且僅當n為斐波那契數?考慮歸納證明 設n是斐波那契數,n a b,a和b為n的前兩個斐波那契數 設先手拿的石子數量為...

斐波那契博弈

規則 有n個石子,先手可以取 1,n 個石子,而後的人至多能取上乙個取石子數的兩倍,即 1,2 x 取完勝 結論 若n為斐波那契數,則先手必敗,否則必勝 證明 數學歸納法 記f i 為斐波那契數列 若n f 0 2,顯然先手必敗 設n f k 時,先手必敗 當n f k 1 時 f k 1 f k ...