在訓練資料不夠多時,或者overtraining時,常常會導致overfitting(過擬合)。其直觀的表現如下圖所示,隨著訓練過程的進行,模型複雜度增加,在training data上的error漸漸減小,但是在驗證集上的error卻反而漸漸增大——因為訓練出來的網路過擬合了訓練集,對訓練集外的資料卻不work。
為了防止overfitting,可以用的方法有很多,下文就將以此展開。有乙個概念需要先說明,在機器學習演算法中,我們常常將原始資料集分為三部分:training data、validation data,testing data。這個validation data是什麼?它其實就是用來避免過擬合的,在訓練過程中,我們通常用它來確定一些超引數(比如根據validation data上的accuracy來確定early stopping的epoch大小、根據validation data確定learning rate等等)。那為啥不直接在testing data上做這些呢?因為如果在testing data做這些,那麼隨著訓練的進行,我們的網路實際上就是在一點一點地overfitting我們的testing data,導致最後得到的testing accuracy沒有任何參考意義。因此,training data的作用是計算梯度更新權重,validation data如上所述,testing data則給出乙個accuracy以判斷網路的好壞。
避免過擬合的方法有很多:
early stopping,資料集擴增(data augmentation),正則化(regularization)包括l1、l2(l2 regularization也叫weight decay),dropout。
c0代表原始的代價函式,後面那一項就是l2正則化項,它是這樣來的:所有引數w的平方的和,除以訓練集的樣本大小n。λ就是正則項係數,權衡正則項與c0項的比重。另外還有乙個係數1/2,1/2經常會看到,主要是為了後面求導的結果方便,後面那一項求導會產生乙個2,與1/2相乘剛好湊整。
l2正則化項是怎麼避免overfitting的呢?我們推導一下看看,先求導:
可以發現l2正則化項對b的更新沒有影響,但是對於w的更新有影響:
在不使用l2正則化時,求導結果中w前係數為1,現在w前面係數為 1−ηλ/n ,因為η、λ、n都是正的,所以 1−ηλ/n小於1,它的效果是減小w,這也就是權重衰減(weight decay)的由來。當然考慮到後面的導數項,w最終的值可能增大也可能減小。
另外,需要提一下,對於基於mini-batch的隨機梯度下降,w和b更新的公式跟上面給出的有點不同:
對比上面w的更新公式,可以發現後面那一項變了,變成所有導數加和,乘以η再除以m,m是乙個mini-batch中樣本的個數。
到目前為止,我們只是解釋了l2正則化項有讓w「變小」的效果,但是還沒解釋為什麼w「變小」可以防止overfitting?乙個所謂「顯而易見」的解釋就是:更小的權值w,從某種意義上說,表示網路的複雜度更低,對資料的擬合剛剛好(這個法則也叫做奧卡姆剃刀),而在實際應用中,也驗證了這一點,l2正則化的效果往往好於未經正則化的效果。當然,對於很多人(包括我)來說,這個解釋似乎不那麼顯而易見,所以這裡新增乙個稍微數學一點的解釋(引自知乎):
過擬合的時候,擬合函式的係數往往非常大,為什麼?如下圖所示,過擬合,就是擬合函式需要顧忌每乙個點,最終形成的擬合函式波動很大。在某些很小的區間裡,函式值的變化很劇烈。這就意味著函式在某些小區間裡的導數值(絕對值)非常大,由於自變數值可大可小,所以只有係數足夠大,才能保證導數值很大。
而正則化是通過約束引數的範數使其不要太大,所以可以在一定程度上減少過擬合情況。
在原始的代價函式後面加上乙個l1正則化項,即所有權重w的絕對值的和,乘以λ/n(這裡不像l2正則化項那樣,需要再乘以1/2,具體原因上面已經說過。)
同樣先計算導數:
上式中sgn(w)表示w的符號。那麼權重w的更新規則為:
比原始的更新規則多出了η * λ * sgn(w)/n這一項。當w為正時,更新後的w變小。當w為負時,更新後的w變大——因此它的效果就是讓w往0靠,使網路中的權重盡可能為0,也就相當於減小了網路複雜度,防止過擬合。
另外,上面沒有提到乙個問題,當w為0時怎麼辦?當w等於0時,|w|是不可導的,所以我們只能按照原始的未經正則化的方法去更新w,這就相當於去掉η*λ*sgn(w)/n這一項,所以我們可以規定sgn(0)=0,這樣就把w=0的情況也統一進來了。(在程式設計的時候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)
L1 L2損失 和 L1 L2正則化
1 l1損失 最小絕對值誤差 最小化 值 真實值 的絕對值,魯棒性強。2 l2損失 最小平方誤差 最小化 值 真實值 的平方,對於大於1的數,平方更大,因此對樣本敏感。3 l1正則化 l1正則化和l2正則化可以看做是損失函式的懲罰項,l1正則化是指權值向量中各個元素的絕對值之和。l1正則化可以產生稀...
L1 L2正則化介紹
1 正則化 regularization 對引數w的影響 說明 loss 代表原始的代價函式,後面那一項就是l2正則化項,它是這樣來的 所有引數w的平方的和,除以訓練集的樣本大小n。就是正則項係數,權衡正則項.在這裡並沒有除以樣本數量和2,是因為使用了絕對值誤差。一般情況下,los s y y 2 ...
神經網路的過擬合問題以及L1 L2正則化
所謂過擬合,指的是當乙個模型過為複雜之後,它可以很好的 記憶 每乙個訓練資料中隨機噪音的部分而忘記了要去 學習 訓練資料中通用的趨勢。舉乙個極端的例子,如果乙個模型的引數比訓練資料的總說還多,那麼只要訓練資料不衝突,這個模型完全可以記住所有訓練資料的結果從而使得損失函式為0。然而,過度擬合訓練資料中...