分布式之資料庫和快取雙寫一致性方案解析

2022-06-29 12:33:11 字數 4625 閱讀 6360

**: 

首先,快取由於其高併發和高效能的特性,已經在專案中被廣泛使用。在讀取快取方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作。

但是在更新快取方面,對於更新完資料庫,是更新快取呢,還是刪除快取。又或者是先刪除快取,再更新資料庫,其實大家存在很大的爭議。目前沒有一篇全面的部落格,對這幾種方案進行解析。於是博主戰戰兢兢,頂著被大家噴的風險,寫了這篇文章。

本文由以下三個部分組成

1、講解快取更新策略

2、對每種策略進行缺點分析

3、針對缺點給出改進方案

先做乙個說明,從理論上來說,給快取設定過期時間,是保證最終一致性的解決方案。這種方案下,我們可以對存入快取的資料設定過期時間,所有的寫操作以資料庫為準,對快取操作只是盡最大努力即可。也就是說如果資料庫寫成功,快取更新失敗,那麼只要到達過期時間,則後面的讀請求自然會從資料庫中讀取新值然後回填快取。因此,接下來討論的思路不依賴於給快取設定過期時間這個方案。

在這裡,我們討論三種更新策略:

先更新資料庫,再更新快取

先刪除快取,再更新資料庫

先更新資料庫,再刪除快取

應該沒人問我,為什麼沒有先更新快取,再更新資料庫這種策略。

這套方案,大家是普遍反對的。為什麼呢?有如下兩點原因。

原因一(執行緒安全角度)

同時有請求a和請求b進行更新操作,那麼會出現

(1)執行緒a更新了資料庫

(2)執行緒b更新了資料庫

(3)執行緒b更新了快取

(4)執行緒a更新了快取

這就出現請求a更新快取應該比請求b更新快取早才對,但是因為網路等原因,b卻比a更早更新了快取。這就導致了髒資料,因此不考慮。

原因二(業務場景角度)

有如下兩點:

(1)如果你是乙個寫資料庫場景比較多,而讀資料場景比較少的業務需求,採用這種方案就會導致,資料壓根還沒讀到,快取就被頻繁的更新,浪費效能。

(2)如果你寫入資料庫的值,並不是直接寫入快取的,而是要經過一系列複雜的計算再寫入快取。那麼,每次寫入資料庫後,都再次計算寫入快取的值,無疑是浪費效能的。顯然,刪除快取更為適合。

接下來討論的就是爭議最大的,先刪快取,再更新資料庫。還是先更新資料庫,再刪快取的問題。

該方案會導致不一致的原因是。同時有乙個請求a進行更新操作,另乙個請求b進行查詢操作。那麼會出現如下情形:

(1)請求a進行寫操作,刪除快取

(2)請求b查詢發現快取不存在

(3)請求b去資料庫查詢得到舊值

(4)請求b將舊值寫入快取

(5)請求a將新值寫入資料庫

上述情況就會導致不一致的情形出現。而且,如果不採用給快取設定過期時間策略,該資料永遠都是髒資料。

那麼,如何解決呢?採用延時雙刪策略

偽**如下

public void write(string key,object data)

轉化為中文描述就是

(1)先淘汰快取

(2)再寫資料庫(這兩步和原來一樣)

(3)休眠1秒,再次淘汰快取

這麼做,可以將1秒內所造成的快取髒資料,再次刪除。

那麼,這個1秒怎麼確定的,具體該休眠多久呢?

針對上面的情形,讀者應該自行評估自己的專案的讀資料業務邏輯的耗時。然後寫資料的休眠時間則在讀資料業務邏輯的耗時基礎上,加幾百ms即可。這麼做的目的,就是確保讀請求結束,寫請求可以刪除讀請求造成的快取髒資料。

如果你用了mysql的讀寫分離架構怎麼辦?

ok,在這種情況下,造成資料不一致的原因如下,還是兩個請求,乙個請求a進行更新操作,另乙個請求b進行查詢操作。

(1)請求a進行寫操作,刪除快取

(2)請求a將資料寫入資料庫了,

(3)請求b查詢快取發現,快取沒有值

(4)請求b去從庫查詢,這時,還沒有完成主從同步,因此查詢到的是舊值

(5)請求b將舊值寫入快取

(6)資料庫完成主從同步,從庫變為新值

上述情形,就是資料不一致的原因。還是使用雙刪延時策略。只是,睡眠時間修改為在主從同步的延時時間基礎上,加幾百ms。

採用這種同步淘汰策略,吞吐量降低怎麼辦?

ok,那就將第二次刪除作為非同步的。自己起乙個執行緒,非同步刪除。這樣,寫的請求就不用沉睡一段時間後了,再返回。這麼做,加大吞吐量。

第二次刪除,如果刪除失敗怎麼辦?

這是個非常好的問題,因為第二次刪除失敗,就會出現如下情形。還是有兩個請求,乙個請求a進行更新操作,另乙個請求b進行查詢操作,為了方便,假設是單庫:

(1)請求a進行寫操作,刪除快取

(2)請求b查詢發現快取不存在

(3)請求b去資料庫查詢得到舊值

(4)請求b將舊值寫入快取

(5)請求a將新值寫入資料庫

(6)請求a試圖去刪除請求b寫入對快取值,結果失敗了。

ok,這也就是說。如果第二次刪除快取失敗,會再次出現快取和資料庫不一致的問題。

如何解決呢?

具體解決方案,且看博主對第(3)種更新策略的解析。

首先,先說一下。老外提出了乙個快取更新套路,名為《cache-aside pattern》。其中就指出

另外,知名社交**facebook也在**《scaling memcache at facebook》中提出,他們用的也是先更新資料庫,再刪快取的策略。

這種情況不存在併發問題麼?

不是的。假設這會有兩個請求,乙個請求a做查詢操作,乙個請求b做更新操作,那麼會有如下情形產生

(1)快取剛好失效

(2)請求a查詢資料庫,得乙個舊值

(3)請求b將新值寫入資料庫

(4)請求b刪除快取

(5)請求a將查到的舊值寫入快取

ok,如果發生上述情況,確實是會發生髒資料。

然而,發生這種情況的概率又有多少呢?

發生上述情況有乙個先天性條件,就是步驟(3)的寫資料庫操作比步驟(2)的讀資料庫操作耗時更短,才有可能使得步驟(4)先於步驟(5)。可是,大家想想,資料庫的讀操作的速度遠快於寫操作的(不然做讀寫分離幹嘛,做讀寫分離的意義就是因為讀操作比較快,耗資源少),因此步驟(3)耗時比步驟(2)更短,這一情形很難出現。

假設,有人非要抬槓,有強迫症,一定要解決怎麼辦?

如何解決上述併發問題?

首先,給快取設有效時間是一種方案。其次,採用策略(2)裡給出的非同步延時刪除策略,保證讀請求完成以後,再進行刪除操作。

還有其他造成不一致的原因麼?

有的,這也是快取更新策略(2)和快取更新策略(3)都存在的乙個問題,如果刪快取失敗了怎麼辦,那不是會有不一致的情況出現麼。比如乙個寫資料請求,然後寫入資料庫了,刪快取失敗了,這會就出現不一致的情況了。這也是快取更新策略(2)裡留下的最後乙個疑問。

如何解決?

提供乙個保障的重試機制即可,這裡給出兩套方案。

方案一

如下圖所示

流程如下所示

(1)更新資料庫資料;

(2)快取因為種種問題刪除失敗

(3)將需要刪除的key傳送至訊息佇列

(4)自己消費訊息,獲得需要刪除的key

(5)繼續重試刪除操作,直到成功

然而,該方案有乙個缺點,對業務線**造成大量的侵入。於是有了方案二,在方案二中,啟動乙個訂閱程式去訂閱資料庫的binlog,獲得需要操作的資料。在應用程式中,另起一段程式,獲得這個訂閱程式傳來的資訊,進行刪除快取操作。

方案二

流程如下圖所示:

(1)更新資料庫資料

(2)資料庫會將操作資訊寫入binlog日誌當中

(3)訂閱程式提取出所需要的資料以及key

(4)另起一段非業務**,獲得該資訊

(5)嘗試刪除快取操作,發現刪除失敗

(6)將這些資訊傳送至訊息佇列

(7)重新從訊息佇列中獲得該資料,重試操作。

備註說明:上述的訂閱binlog程式在mysql中有現成的中介軟體叫canal,可以完成訂閱binlog日誌的功能。至於oracle中,博主目前不知道有沒有現成中介軟體可以使用。另外,重試機制,博主是採用的是訊息佇列的方式。如果對一致性要求不是很高,直接在程式中另起乙個執行緒,每隔一段時間去重試即可,這些大家可以靈活自由發揮,只是提供乙個思路。

本文其實是對目前網際網路中已有的一致性方案,進行了乙個總結。對於先刪快取,再更新資料庫的更新策略,還有方案提出維護乙個記憶體佇列的方式,博主看了一下,覺得實現異常複雜,沒有必要,因此沒有必要在文中給出。最後,希望大家有所收穫。

1、主從db與cache一致性

2、快取更新的套路

分布式之資料庫和快取雙寫一致性方案解析

對每種策略進行缺點分析 針對缺點給出改進方案 先刪除快取,再更新資料庫 先更新資料庫,再刪除快取 執行緒b更新了資料庫 執行緒b更新了快取 執行緒a更新了快取 請求b查詢發現快取不存在 請求b去資料庫查詢得到舊值 請求b將舊值寫入快取 請求a將新值寫入資料庫 public void write st...

分布式之資料庫和快取雙寫一致性方案解析

為什麼寫這篇文章?首先,快取由於其高併發和高效能的特性,已經在專案中被廣泛使用。在讀取快取方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作。但是在更新快取方面,對於更新完資料庫,是更新快取呢,還是刪除快取。又或者是先刪除快取,再更新資料庫,其實大家存在很大的爭議。目前沒有一篇全面的部落格,對這幾...

分布式之資料庫和快取雙寫一致性方案解析

首先,快取由於其高併發和高效能的特性,已經在專案中被廣泛使用。在讀取快取方面,大家沒啥疑問,都是按照下圖的流程來進行業務操作。但是在更新快取方面,對於更新完資料庫,是更新快取呢,還是刪除快取。又或者是先刪除快取,再更新資料庫,其實大家存在很大的爭議。目前沒有一篇全面的部落格,對這幾種方案進行解析。於...