k近鄰 一種分類演算法
綠色圓要被決定賦予哪個類,是紅色三角形還是藍色四方形?如果k=3,由於紅色三角形所佔比例為2/3,綠色圓將被賦予紅色三角形那個類,如果k=5,由於藍色四方形比例為3/5,因此綠色圓被賦予藍色四方形類,k 最近鄰 (k-nearest neighbor,knn) 分類演算法,是乙個理論上比較成熟的方法,也是最簡單的機器學習演算法之一,2023年由 cover 和 hart 提出。
所謂k近鄰演算法,即是給定乙個訓練資料集,對新的輸入例項,在訓練資料集中找到與該例項最鄰近的k個例項(也就是上面所說的k個鄰居), 這k個例項的多數屬於某個類,就把該輸入例項分類到這個類中
通俗理解計算的就是n維空間 兩點之間的距離
k 近鄰演算法
此文章參考機器學習實戰一書,具體的理論知識可以參考該書。本文的初衷只是為了做乙個複習,將學過的知識加以整理,其中不免有一定的錯誤。2.k 近鄰演算法的原理介紹 k 近鄰演算法通過測量不同的特徵值之間的距離進行分類。它的工作原理如下 存在乙個樣本的資料集合,也成為訓練樣本集合。並且樣本集中的每個資料都...
K 近鄰演算法
k 近鄰演算法採用測量不同特徵值之間的距離方法進行分類。優點 精度高 對異常值不敏感 無資料輸入假定 缺點 計算複雜度高 空間複雜度高 適用資料範圍 數值型和標稱型 工作原理 存在乙個樣本資料集合,也稱作訓練樣本集,並且樣本集中每個資料都存在標籤,即我們知道樣本集中每一資料與所屬分類的對應關係。輸入...
K 近鄰演算法
首先,我們將 k 近鄰演算法的基本理論 其次我們將使用python從文字檔案中匯入並解析資料 再次,討論當存在許多資料 的時,如何避免計算距離時可能碰到的一些常見錯誤 最後,利用實際的例子講解如何使用k 近鄰演算法改進約會 1.1 knn演算法 工作原理 存在乙個樣本資料集合,也稱作訓練樣本集,並且...