最近開始接觸機器學習,簡稱ml。
ml 可以這樣理解,從一堆資料中提煉出特徵值。
首先,我們需要在計算機中儲存歷史的資料。接著,我們將這些 資料通過機器學習演算法進行處理,這個過程在機器學習中叫做「訓練」,處理的結果可以被我們用來對新的資料進行**,這個結果一般稱之為「模型」。對新資料 的**過程在機器學習中叫做「**」。「訓練」與「**」是機器學習的兩個過程,「模型」則是過程的中間輸出結果,「訓練」產生「模型」,「模型」指導 「**」。
from
機器學習 初識機器學習
1.什麼是機器學習?對於機器學習到現在都還沒有統一的定義,但是,通過乙個例子和較權威的定義來理解機器學習,最後附上我個人對機器學習的理解 2.監督學習 1 監督學習基本思想 我們資料集中的每個樣本都有相應的 正確答案 即每個樣本都是真實值,再根據這些樣本作出 舉乙個房價預售的例子來說明 eg 下面圖...
機器學習 機器學習目錄
注 後期有時間的話會對每乙個演算法進行講解。1 普通線性回歸 2 廣義線性模型 3 邏輯回歸 4 線性判定分析1 決策樹基本原理與構建 2 cart演算法 3 回歸決策樹 4 分類決策樹1 貝葉斯定理與樸素貝葉斯 2 高斯貝葉斯分類器 3 多項式貝葉斯分類器 4 伯努利貝葉斯分類器 5 遞增式學習1...
機器學習一 機器學習概要
回歸 是指把實函式在樣本點附近加以近似的有監督的模式識別問題。對乙個或多個自變數和因變數之間關係進行建模,求解的一種統計方法。分類 是指對於指定的模式進行識別的有監督的模式識別問題。異常檢測 是指尋找輸入樣本ni 1i 1 n中所包含的異常資料的問題。常採用密度估計的方法 正常資料為靠近密度中心的資...