二分類問題中混淆矩陣 PR以及AP評估指標

2022-01-09 20:31:53 字數 1371 閱讀 8962

仿照上篇博文對於混淆矩陣、roc和auc指標的**,本文簡要討論機器學習二分類問題中的混淆矩陣、pr以及ap評估指標;實際上,(roc,auc)與(pr,ap)指針對具有某種相似性。

按照循序漸進的原則,依次討論混淆矩陣、pr和ap:

設定乙個機器學習問題情境:給定一些腫瘤患者樣本,構建乙個分類模型來**腫瘤是良性還是惡性,顯然這是乙個二分類問題。

本文中,將良性腫瘤視為正類標籤(可能在具體實踐中更為關注惡性腫瘤,不過這並不影響技術上的操作)。

當分類模型選定以後,將其在測試資料集上進行評估,分別可以得到以下評估指標:

tp表示**為良性,真實情況是良性的樣例數;

fn表示**為惡性,真實情況是良性的樣例數;

fp表示**為良性,真實情況是惡性的樣例數;

tn表示**為惡性,真實情況是惡性的樣例數;

以上四類資料構成混淆矩陣。

在混淆矩陣的基礎上,進一步地定義兩個指標。

按照下式定義precision(p)指標

precision表示,**為正的樣本中有多少是真正的正樣本;精準率強調對某類樣本識別的準確性。

按照下式定義recall(r)指標

recall表示,樣本中的正例有多少被**正確了;召回率強調對某類樣本識別的全面性。

precision,recall分別反映分類器對某一類樣本鑑別能力的兩個方面;通常,這兩個指標呈現互斥關係,即乙個指標高了往往會致使另一指標降低。

由上,乙個混淆矩陣對應一對(precision,recall)

需要明確的是,p和r是建立在類別明確的**結果之上的,即分類模型明確地指出待**樣本的類別。

然而,在二分類問題(0,1)中,一般模型最後的輸出是乙個概率值,表示結果是1的概率。此時需要確定乙個閾值,若模型的輸出概率超過閾值,則歸類為1;若模型的輸出概率低於閾值,則歸類為0。

不同的閾值會導致分類的結果不同,也就是混淆矩陣有差,p和r也就不同。

當閾值從0開始慢慢移動到1的過程,就會形成很多對(precision,recall)的值,將它們畫在座標系上,就是所謂的pr曲線了。

得到pr曲線後,就可以計算曲線下方的面積,計算出來的面積就是ap值。

一般而言,ap越大,模型的效能越好。

二分類問題中的混淆矩陣 ROC以及AUC評估指標

本篇博文簡要討論機器學習二分類問題中的混淆矩陣 roc以及auc評估指標 作為評價模型的重要參考,三者在模型選擇以及評估中起著指導性作用。按照循序漸進的原則,依次討論混淆矩陣 roc和auc 設定乙個機器學習問題情境 給定一些腫瘤患者樣本,構建乙個分類模型來 腫瘤是良性還是惡性,顯然這是乙個二分類問...

二分類問題混淆矩陣和相關引數

的類 實際的類 f tp f t p f fn f fn f fp f fp f tn f tn 或者稱靈敏度 sensitivity 定義為被模型正確 的正樣本的比例,即 tp r tp tp f n tpr tpt p fn 或者稱特指率 specificity 定義為被模型正確 的負樣本的比例...

二分類混淆矩陣結構 從混淆矩陣到樣本不平衡分類指標

confusing matrix 也譯作混淆矩陣,是一項古老經典的統計技術,見下圖。classification代表分類器判斷的結果,positive 是 陽性 真等 negative 非 陰性 假等 condition代表事實情況,true 事實為真 false 事實是假 把classificat...