對於乙個具有樹特徵的無向圖,我們可選擇任何乙個節點作為根。圖因此可以成為樹,在所有可能的樹中,具有最小高度的樹被稱為最小高度樹。給出這樣的乙個圖,寫出乙個函式找到所有的最小高度樹並返回他們的根節點。
格式該圖包含 n 個節點,標記為 0 到 n - 1。給定數字 n 和乙個無向邊 edges 列表(每乙個邊都是一對標籤)。
你可以假設沒有重複的邊會出現在 edges 中。由於所有的邊都是無向邊, [0, 1]和 [1, 0] 是相同的,因此不會同時出現在 edges 裡。
示例 1:
輸入: n = 4, edges = [[1, 0], [1, 2], [1, 3]]0|
1/ \
2 3
輸出: [1]
示例 2:
輸入: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /3|
4|5 輸出: [3, 4]
說明:根據樹的定義,樹是乙個無向圖,其中任何兩個頂點只通過一條路徑連線。 換句話說,乙個任何沒有簡單環路的連通圖都是一棵樹。
樹的高度是指根節點和葉子節點之間最長向下路徑上邊的數量。
class solution
int remained = n;
vectorvisited(n, false);
queuecandidates;
while (remained > 2)
while (!candidates.empty())
adj[c].clear();}}
vectorres;
for (int i = 0; i < n; ++i)
return res;
}};
Leetcode 310 最小高度樹
對於乙個具有樹特徵的無向圖,我們可選擇任何乙個節點作為根。圖因此可以成為樹,在所有可能的樹中,具有最小高度的樹被稱為最小高度樹。給出這樣的乙個圖,寫出乙個函式找到所有的最小高度樹並返回他們的根節點。格式該圖包含 n 個節點,標記為 0 到 n 1。給定數字 n 和乙個無向邊 edges 列表 每乙個...
leetcode 310 最小高度樹
對於乙個具有樹特徵的無向圖,我們可選擇任何乙個節點作為根。圖因此可以成為樹,在所有可能的樹中,具有最小高度的樹被稱為最小高度樹。給出這樣的乙個圖,寫出乙個函式找到所有的最小高度樹並返回他們的根節點。格式該圖包含 n 個節點,標記為 0 到 n 1。給定數字 n 和乙個無向邊 edges 列表 每乙個...
leetcode310 最小高度樹
對於乙個具有樹特徵的無向圖,我們可選擇任何乙個節點作為根。圖因此可以成為樹,在所有可能的樹中,具有最小高度的樹被稱為最小高度樹。給出這樣的乙個圖,寫出乙個函式找到所有的最小高度樹並返回他們的根節點。格式該圖包含 n 個節點,標記為 0 到 n 1。給定數字 n 和乙個無向邊 edges 列表 每乙個...