convolutional neural networks for visual recognition,即面向視覺識別的卷積神經網路。該課程是史丹福大學計算機視覺實驗室推出的課程。
計算機視覺在社會中已經逐漸普及,並廣泛運用於搜尋檢索、影象理解、手機應用、地圖導航、醫療製藥、無人機和無人駕駛汽車等領域。而這些應用的核心技術就是影象分類、影象定位和影象探測等視覺識別任務。近期神經網路(也就是「深度學習」)方法上的進展極大地提公升了這些代表當前發展水平的視覺識別系統的效能。
本課程將深入講解深度學習框架的細節問題,聚焦面向視覺識別任務(尤其是影象分類任務)的端到端學習模型。在10周的課程中,學生們將會學習如何實現、訓練和除錯他們自己的神經網路,並建立起對計算機視覺領域的前沿研究方向的細節理解。最終的作業將包括訓練乙個有幾百萬引數的卷積神經網路,並將其應用到最大的影象分類資料庫(imagenet)上。我們將會聚焦於教授如何確定影象識別問題,學習演算法(比如反向傳播演算法),對網路的訓練和精細調整(fine-tuning)中的工程實踐技巧,指導學生動手完成課程作業和最終的課程專案。本課程的大部分背景知識和素材都**於imagenet challenge競賽。
cs231n筆記總結
cs231n的課程以及作業都完成的差不多了,後續的課程更多的涉及到卷積神經網路的各個子方向了,比如語義分割 目標檢測 定位 視覺化 遷移學習 模型壓縮等等。assignment3有涉及到這些中的一部分,但需要深入了解的話還是得看 了。所以在看 前把之前已學的知識,筆記和作業 一起做個整理。部落格裡主...
CS231n理解筆記
linear classification notes 該方法的組成 乙個是評分函式 原始影象資料到類別分值的對映 乙個是損失函式 用來量化 分類標籤的得分和真實標籤之間的一致性。影象分類的任務是從已有的固定分類標籤中選擇乙個並分配一張影象,我們介紹了knn分類器,該分類器的基本思想是通過將測試影象...
CS231n課程筆記翻譯
賀完結!cs231n官方筆記授權翻譯總集篇發布 智慧型單元 知乎專欄 cs231n課程筆記翻譯 影象分類筆記 上 智慧型單元 知乎專欄 cs231n課程筆記翻譯 影象分類筆記 下 智慧型單元 知乎專欄 cs231n課程筆記翻譯 線性分類筆記 上 智慧型單元 知乎專欄 cs231n課程筆記翻譯 線性分...