一、基本描述
類似於回溯法,也是一種在問題的解空間樹t上搜尋問題解的演算法。但在一般情況下,分支限界法與回溯法的求解目標不同。回溯法的求解目標是找出t中滿足約束條件的所有解,而分支限界法的求解目標則是找出滿足約束條件的乙個解,或是在滿足約束條件的解中找出使某一目標函式值達到極大或極小的解,即在某種意義下的最優解。
(1)分支搜尋演算法
選擇下乙個e-結點的方式不同,則會有幾種不同的分支搜尋方式。
1)fifo搜尋
2)lifo搜尋
3)優先佇列式搜尋
(2)分支限界搜尋演算法
二、分支限界法的一般過程
由於求解目標不同,導致分支限界法與回溯法在解空間樹t上的搜尋方式也不相同。回溯法以深度優先的方式搜尋解空間樹t,而分支限界法則以廣度優先或以最小耗費優先的方式搜尋解空間樹t。
分支限界法的搜尋策略是:在擴充套件結點處,先生成其所有的兒子 結點(分支),然後再從當前的活結點表中選擇下乙個擴充套件對點。為了有效地選擇下一擴充套件結點,以加速搜尋的程序,在每一活結點處,計算乙個函式值(限界), 並根據這些已計算出的函式值,從當前活結點表中選擇乙個最有利的結點作為擴充套件結點,使搜尋朝著解空間樹上有最優解的分支推進,以便盡快地找出乙個最優解。
分支限界法常以廣度優先或以最小耗費(最大效益)優先的方式搜尋問題的解空間樹。問題的解空間樹是表示問題解空間的一棵有序樹,常見的有子集樹和排列樹。 在搜尋問題的解空間樹時,分支限界法與回溯法對當前擴充套件結點所使用的擴充套件方式不同。在分支限界法中,每乙個活結點只有一次機會成為擴充套件結點。活結點一旦成 為擴充套件結點,就一次性產生其所有兒子結點。在這些兒子結點中,那些導致不可行解或導致非最優解的兒子結點被捨棄,其餘兒子結點被子加入活結點表中。此後, 從活結點表中取下一結點成為當前擴充套件結點,並重複上述結點擴充套件過程。這個過程一直持續到找到所求的解或活結點表為空時為止。
三、回溯法和分支限界法的一些區別
有一些問題其實無論用回溯法還是分支限界法都可以得到很好的解決,但是另外一些則不然。也許我們需要具體一些的分析——到底何時使用分支限界而何時使用回溯呢?
回溯法和分支限界法的一些區別:
方法對解空間樹的搜尋方式 儲存結點的常用資料結構 結點儲存特性常用應用
回溯法深度優先搜尋堆疊活結點的所有可行子結點被遍歷後才被從棧中彈出找出滿足約束條件的所有解
分支限界法廣度優先或最小消耗優先搜尋佇列、優先佇列每個結點只有一次成為活結點的機會找出滿足約束條件的乙個解或特定意義下的最優解
回溯法採用的搜尋策略 五大常用演算法之四 回溯法
1 概念 回溯演算法實際上乙個類似列舉的搜尋嘗試過程,主要是在搜尋嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就 回溯 返回,嘗試別的路徑。回溯法是一種選優搜尋法,按選優條件向前搜尋,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術...
五大常用演算法 回溯法
於 回溯演算法實際上乙個類似列舉的搜尋嘗試過程,主要是在搜尋嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就 回溯 返回,嘗試別的路徑。回溯法是一種選優搜尋法,按選優條件向前搜尋,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯...
五大常用演算法之四 回溯法
回溯演算法實際上乙個類似列舉的搜尋嘗試過程,主要是在搜尋嘗試過程中尋找問題的解,當發現已不滿足求解條件時,就 回溯 返回,嘗試別的路徑。回溯法是一種選優搜尋法,按選優條件向前搜尋,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,...