data =
dict
( videos_per_gpu=8,
workers_per_gpu=4,
train=
dict
(type
=dataset_type,
ann_file=ann_file_train,
data_prefix=data_root,
pipeline=train_pipeline)
, val=
dict
(type
=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=val_pipeline)
, test=
dict
(type
=dataset_type,
ann_file=ann_file_val,
data_prefix=data_root_val,
pipeline=test_pipeline)
)
pipeline的構建過程:將配置檔案中定義的內容轉換為乙個list,並將該list傳入mmaction.datasets.pipelines.compose.compose
中。
pipeline 配置檔案概述:
train_pipeline =
[dict
(type
='sampleframes'
, clip_len=
32, frame_interval=
2, num_clips=1)
,dict
(type
='frameselector'
, decoding_backend=
'turbojpeg'),
dict
(type
='resize'
, scale=(-
1,256)
, lazy=
true),
dict
(type
='multiscalecrop'
, input_size=
224,
scales=(1
,0.8),
random_crop=
false
, max_wh_scale_gap=0,
lazy=
true),
dict
(type
='resize'
, scale=
(224
,224
), keep_ratio=
false
, lazy=
true),
dict
(type
='flip'
, flip_ratio=
0.5, lazy=
true),
dict
(type
='fuse'),
dict
(type
='normalize'
,**img_norm_cfg)
,dict
(type
='formatshape'
, input_format=
'ncthw'),
dict
(type
='collect'
, keys=
['imgs'
,'label'
], meta_keys=
),dict
(type
='totensor'
, keys=
['imgs'
,'label'])
]val_pipeline =
[dict
(type
='sampleframes'
, clip_len=32,
frame_interval=2,
num_clips=1,
test_mode=
true),
dict
(type
='frameselector'
, decoding_backend=
'turbojpeg'),
dict
(type
='resize'
, scale=(-
1,256)
, lazy=
true),
dict
(type
='centercrop'
, crop_size=
224, lazy=
true),
dict
(type
='flip'
, flip_ratio=
0, lazy=
true),
dict
(type
='fuse'),
dict
(type
='normalize'
,**img_norm_cfg)
,dict
(type
='formatshape'
, input_format=
'ncthw'),
dict
(type
='collect'
, keys=
['imgs'
,'label'
], meta_keys=
),dict
(type
='totensor'
, keys=
['imgs'])
]test_pipeline =
[dict
(type
='sampleframes'
, clip_len=32,
frame_interval=2,
num_clips=10,
test_mode=
true),
dict
(type
='frameselector'
, decoding_backend=
'turbojpeg'),
dict
(type
='resize'
, scale=(-
1,256)),
dict
(type
='threecrop'
, crop_size=
256)
,dict
(type
='flip'
, flip_ratio=0)
,dict
(type
='normalize'
,**img_norm_cfg)
,dict
(type
='formatshape'
, input_format=
'ncthw'),
dict
(type
='collect'
, keys=
['imgs'
,'label'
], meta_keys=
),dict
(type
='totensor'
, keys=
['imgs'])
]
呼叫compose
類實現的功能就是將資料依次通過所有元件,得到結果。
pipeline的分類
資料增強
資料型別/格式轉換
上面介紹過的compose
普通形式:在連續的幀中,間隔x幀提取幀,一共獲取y幀。
densesampleframes
mmaction2 指南 5 自定義新模組
新的head 新增新的學習策略 learning rate scheduler updater 參考 copyofsgd 例子 mmaction core optimizer my optimizer.py from registry import optimizers from torch.opt...
mysql資料庫編譯 Mysql資料庫原始碼編譯安裝
yum y install gcc gcc c make ncurses ncurses devel bison cmake 二 編譯及安裝 1 建立執行使用者 useradd s sbin nologin mysql 手動建乙個賬號 2 解包 把壓縮包傳進linux裡面 tar xf mysql ...
Linux驅動學習 I2C裝置驅動框架原始碼解析
一 引言 二 原始碼分析 i2c核心介紹 i2c driver的註冊 i2c client的註冊 probe i2c裝置構造的四種方法 i2c與cpu通訊方式之前和大家分析了linux中的i2c框架,本章來結合原始碼分析乙個具體的i2c裝置 i2c核心介紹 i2c 核心提供了 i2c匯流排驅動 和 ...