30戶的暖氣的分析結果複製貼上下來發給隊友
(好像是有點多了乙個對話方塊都過不去)
被嫌棄了
你就不能給我打包個excel!!!
好吧
import csv
with open("result.csv","w") as csvfile:
writer = csv.writer(csvfile)
#先寫入columns_name
writer.writerow(['index','住戶','模型權重','截距','回歸方程','訓練集r^2','測試集r^2','均方誤差(mse)','根均方誤差(rmse)','"平均絕對值誤差(mae)'])
def all(x):
data2=data[(data.address_2nd==x)]
x ,y= data2[['power','in_temperature','溫度']],data2['room_temperature']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
lr = linearregression()
lr.fit(x_train, y_train)
y_hat = lr.predict(x_test)
df1=x
df2=lr.coef_
df3=lr.intercept_
list(df2)
df4=('y = %f x1 + %f x2 +%f x3 +%f'%(df2[0],df2[1],df2[2],df3))
df5=r2_score(y_train, lr.predict(x_train))
df6=r2_score(y_test, y_hat)
df7=mean_squared_error(y_test, y_hat)
df8=np.sqrt(mean_squared_error(y_test, y_hat))
df9=mean_absolute_error(y_test, y_hat)
writer.writerows([[i,df1,df2,df3,df4,df5,df6,df7,df8,df9]])
address = [15311251,15310819,15310804,15311234,15311289,15311072,15311061,15310846,15311065,15311342,15311245,15310966,
15311191,15311361,15310827,15311196,15311235,15311233,15310808,15311473,15310839,15310815,15310845,
15311082]
for i in range(len(address)):
x = address[i]
all(x)
for i in address:
df1=x
df2=lr.coef_
df3=lr.intercept_
df4=r2_score(y_train, lr.predict(x_train))
i+=1
CSV的多行寫入和迴圈追加
def writ in csv global lats global lons global soil m 三個全域性變數用於存放經緯度,土壤數值 count 0with open r hecdata pm.csv a newline as f a表示在文末追加,newline用於去除間隔的空行 w...
python使用csv寫入csv檔案
沒什麼好說的,直接上 吧 with open file.csv w encoding utf 8 newline as csvfile writer csv.writer csvfile 首先是表頭 writer.writerow id name gender birthday rating 然後是...
python資料寫入CSV
下面我將介紹什麼時候適合使用pandas,什麼時候適合使用csv庫。主要區別是乙個按行儲存方便,乙個按列訪問方便。假設第一列為 1,1,1,1 第二列為 2,2,2,2 第三列的值為 3,3,3 列名 表頭名字 為column1,column2,column3。如下 import pandas as...