零基礎入門CV之街道字元識別(五)

2021-10-06 18:26:58 字數 2936 閱讀 2158

模型整合其實就是整合學習。

整合學習方法

在機器學習中的整合學習可以在一定程度上提高**精度,常見的整合學習方法有stacking、bagging和boosting,同時這些整合學習方法與具體驗證集劃分聯絡緊密。

由於深度學習模型一般需要較長的訓練週期,如果硬體裝置不允許建議選取留出法,如果需要追求精度可以使用交叉驗證的方法。

下面假設構建了10折交叉驗證,訓練得到10個cnn模型。

那麼在10個cnn模型可以使用如下方式進行整合:

對**的結果的概率值進行平均,然後解碼為具體字元;

對**的字元進行投票,得到最終字元。

dropout

dropout可以作為訓練深度神經網路的一種技巧。在每個訓練批次中,通過隨機讓一部分的節點停止工作。同時在**的過程中讓所有的節點都其作用。dropout經常出現在在先有的cnn網路中,可以有效的緩解模型過擬合的情況,也可以在**時增加模型的精度。

# 定義模型

class svhn_model1(nn.module):

def __init__(self):

super(svhn_model1, self).__init__()

# cnn提取特徵模組

self.cnn = nn.sequential(

nn.conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),

nn.relu(),

nn.dropout(0.25),

nn.maxpool2d(2),

nn.conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),

nn.relu(),

nn.dropout(0.25),

nn.maxpool2d(2),)#

self.fc1 = nn.linear(32*3*7, 11)

self.fc2 = nn.linear(32*3*7, 11)

self.fc3 = nn.linear(32*3*7, 11)

self.fc4 = nn.linear(32*3*7, 11)

self.fc5 = nn.linear(32*3*7, 11)

self.fc6 = nn.linear(32*3*7, 11)

def forward(self, img):

feat = self.cnn(img)

feat = feat.view(feat.shape[0], -1)

c1 = self.fc1(feat)

c2 = self.fc2(feat)

c3 = self.fc3(feat)

c4 = self.fc4(feat)

c5 = self.fc5(feat)

c6 = self.fc6(feat)

return c1, c2, c3, c4, c5, c6

tta

測試集資料擴增(test time augmentation,簡稱tta)也是常用的整合學習技巧,資料擴增不僅可以在訓練時候用,而且可以同樣在**時候進行資料擴增,對同乙個樣本**三次,然後對三次結果進行平均。

def predict(test_loader, model, tta=10):

model.eval()

test_pred_tta = none

# tta 次數

for _ in range(tta):

test_pred =

with torch.no_grad():

for i, (input, target) in enumerate(test_loader):

c0, c1, c2, c3, c4, c5 = model(data[0])

output = np.concatenate([c0.data.numpy(), c1.data.numpy(),

c2.data.numpy(), c3.data.numpy(),

c4.data.numpy(), c5.data.numpy()], axis=1)

test_pred = np.vstack(test_pred)

if test_pred_tta is none:

test_pred_tta = test_pred

else:

test_pred_tta += test_pred

return test_pred_tta

snapshot

本章的開頭已經提到,假設我們訓練了10個cnn則可以將多個模型的**結果進行平均。但是加入只訓練了乙個cnn模型,如何做模型整合呢?

在**snapshot ensembles中,作者提出使用cyclical learning rate進行訓練模型,並儲存精度比較好的一些checkopint,最後將多個checkpoint進行模型整合。

由於在cyclical learning rate中學習率的變化有週期性變大和減少的行為,因此cnn模型很有可能在跳出區域性最優進入另乙個區域性最優。在snapshot**中作者通過使用表明,此種方法可以在一定程度上提高模型精度,但需要更長的訓練時間。。

結果後處理

在不同的任務中可能會有不同的解決方案,不同思路的模型不僅可以互相借鑑,同時也可以修正最終的**結果。

在本次賽題中,可以從以下幾個思路對**結果進行後處理:

統計中每個位置字元出現的頻率,使用規則修正結果;

單獨訓練乙個字元長度**模型,用來**中字元個數,並修正結果。

本章小節

在本章中我們講解了深度學習模型做整合學習的各種方法,並以此次賽題為例講解了部分**。以下幾點需要同學們注意:

整合學習只能在一定程度上提高精度,並需要耗費較大的訓練時間,因此建議先使用提高單個模型的精度,再考慮整合學習過程;

具體的整合學習方法需要與驗證集劃分方法結合,dropout和tta在所有場景有可以起作用。

零基礎入門CV之街道字元識別(一)

我感覺比較費時間的是pytorch的安裝,由於在網上找不到乙個合適的教程,安裝pytorch花了很長時間,主要是網上的教程大多和我的情況不一樣。賽題理解 在這之前還沒有接觸過cv這一方向。所以第一眼看到賽題是一種很茫然的感覺。之後看了講解學到了乙個大概的思路。不過資料處理部分也是很重要的。這次的cv...

學習筆記 零基礎入門CV之街道字元識別 賽題理解

學習主題 零基礎入門cv之街道字元識別。學習目標 通過賽題引導競賽選手入門計算機視覺,提高對資料建模。2.1 賽題目標 本次賽題的目標是識別出類似下圖中的字元,例如下圖中的數字 68 圖12.2 賽題資料圖2 訓練資料集示例 訓練集資料報括3w張 驗證集資料報括1w張 每張 包括顏色影象和對應的編碼...

零基礎入門CV賽事 Task3 字元識別模型

卷積神經網路 簡稱cnn 是一類特殊的人工神經網路,是深度學習中重要的乙個分支。cnn在很多領域都表現優異,精度和速度比傳統計算學習演算法高很多。特別是在計算機視覺領域,cnn是解決影象分類 影象檢索 物體檢測和語義分割的主流模型。cnn每一層由眾多的卷積核組成,每個卷積核對輸入的畫素進行卷積操作,...