題目
fedya studies in a gymnasium. fedya』s maths hometask is to calculate the following expression:
(1^n + 2^n + 3^n + 4^n) mod 5
for given value of n. fedya managed to complete the task. can you? note that given number n can be extremely large (e.g. it can exceed any integer type of your programming language).
input
the single line contains a single integer n (0 ≤ n ≤ 10105). the number doesn』t contain any leading zeroes.
output
print the value of the expression without leading zeros.
題目大意
給出乙個數n,求(1^n + 2^n + 3^n + 4^n) mod 5的值。
解題思路
先把1^n , 2^n, 3^n, 4^n的規律找出來。
然後再找(1^n + 2^n + 3^n + 4^n) mod 5的規律。
規律當n為4的倍數時,輸出4,其餘情況輸出0.
判斷乙個數是否為4的倍數(n很大)
法一 n%2為偶數
法二 判斷n(n>=10)的最後兩位是否為4的倍數,加上n<10 的特判
**
#include
#include
#include
using
namespace std;
string st;
intmain()
if(st[st.
size()
-1]%
2!=0)
printf
("0\n");
else
num=num*
10+st[st.
size()
-1]-
48;num/=2
;if(num%2==
0)printf
("4\n");
else
printf
("0\n");
}}
2021寒假訓練
之前都沒有記錄,這些是div2的 二分套二分板子,值得記錄 教訓 1 scanf eof 2 二分邊界!include include include include include include include include include include include include in...
2016寒假訓練 搜尋
一開始做這個題目還是覺的挺煩的,主要是要加個四個變數,然後比較,比較起來還比較麻煩。繞口令,呵呵 首先,不需要找到的次序,而且m 20,所以不會有爆棧的風險。然後就是怎麼去解決的問題,因為所有的木頭都是整數,所以我們考慮這個問題,所以我們可以預見的是,一旦總和 4不為0的話,則一定是不可能。下面就是...
寒假訓練2 總結
1 hdu 4810 wall painting 組合數 二進位制拆分 2 hdu 5573 binary tree 二進位制思維題 3 hdu 5501 the highest mark 揹包 貪心 4 hdu 5493 queue 樹狀陣列 二分查詢 5 hdu 3639 hawk and ch...