xi1 = max(box1[0], box2[0])
yi1 = max(box1[1], box2[1])
xi2 = min(box1[2], box2[2])
yi2 = min(box1[3], box2[3])
inter_area = (xi2 - xi1) * (yi2 - yi1)
但是實際執行的時候報錯,意思是max函式不能這樣用
雖然這是其中乙個問題,但是我感覺這個樣子計算還是沒有任何意義
於是我自己將計算改為:
xi = max(box1[0], box2[0])
yi = max(box1[1], box2[1])
w = min(box1[2], box2[2]) - xi
h = min(box1[3], box2[3]) - yi
if w < 0 or h < 0:
inner_area = 0
else:
inter_area = h * w
這樣就可以了,感覺也可以包括那種inner_area=0的情況 深度學習 吳恩達
第三週神經網路 啟用函式 第一門課 感謝黃博的參考筆記 一次梯度下降 正向傳播與反向傳播 一次反向傳播梯度下降 注意與機器學習課程不同的一點是,第一層不算樣本輸入 a t an z a tan z a tan z 的值域是位於 1和 1之間。a t anh z e z e zez e za tanh...
吳恩達深度學習筆記
2.02 紅色為小標題,藍色比較重要 第四講第二週 4.2.1 為什麼要進行例項 4.2.2 經典網路 lenet 5網路當時還沒有padding,所以在卷積過程當中越來越小 也沒有relu函式,當時這個例子用的是sigmoid函式。超級引數不是很多。這個典型的網路有padding,使用的是relu...
總結 吳恩達深度學習
從去年8月份開始,ai界大ip吳恩達在coursera上開設了由5們課組成的深度學習專項課程,掀起了一股人工智慧深度學習熱潮。這裡附上deeplearning.ai的官網 deeplearning.ai,也可以在網易雲課堂學習 有中文字幕 關於該深度學習專項課程,本人非常推薦!它對於理解各種演算法背...