Python入門專案

2021-09-13 10:13:48 字數 2882 閱讀 6516

最近學習python在網上找到乙個很好的小入門級的專案但是發現由於版本的問題,不能直接執行,於是自己修改了一下

**實現:

import sys

from pandas.plotting import scatter_matrix

print('python: {}'.format(sys.version))

# scipy

import scipy

print('scipy: {}'.format(scipy.__version__))

# numpy

import numpy

print('numpy: {}'.format(numpy.__version__))

# matplotlib

import matplotlib

import matplotlib.pyplot as plt

print('matplotlib: {}'.format(matplotlib.__version__))

# pandas

import pandas

print('pandas: {}'.format(pandas.__version__))

# scikit-learn

import sklearn

from sklearn.model_selection import kfold

from sklearn.linear_model import logisticregression

from sklearn.discriminant_analysis import lineardiscriminantanalysis

print('sklearn: {}'.format(sklearn.__version__))

# load dataset

url = ""

names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']

dataset = pandas.read_csv(url, names=names)

# shape

print(dataset.shape)

# descriptions

print(dataset.describe())

# box and whisker plots

dataset.plot(kind='box', subplots=true, layout=(2, 2), sharex=false, sharey=false)

plt.show()

# histograms

dataset.hist()

plt.show()

# scatter plot matrix

scatter_matrix(dataset)

plt.show()

# split-out validation dataset

array = dataset.values

x = array[:, 0:4]

y = array[:, 4]

validation_size = 0.20

seed = 7

x_train, x_validation, y_train, y_validation = sklearn.model_selection.train_test_split(x, y, test_size=validation_size, random_state=seed)

# test options and evaluation metric

seed = 7

scoring = 'accuracy'

#spot check algorithms

models =

# evaluate each model in turn

results =

names =

for name, model in models:

kfold = kfold(n_splits=10, random_state=seed)

cv_results = sklearn.model_selection.cross_val_score(model, x_train, y_train, cv=kfold, scoring=scoring)

msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std())

print(msg)

# compare algorithms

fig = plt.figure()

fig.suptitle('algorithm comparison')

ax = fig.add_subplot(111)

plt.boxplot(results)

ax.set_xticklabels(names)

plt.show()

# make predictions on validation dataset

knn = sklearn.neighbors.kneighborsclassifier()

knn.fit(x_train, y_train)

predictions = knn.predict(x_validation)

print(sklearn.metrics.accuracy_score(y_validation, predictions))

print(sklearn.metrics.confusion_matrix(y_validation, predictions))

print(sklearn.metrics.classification_report(y_validation, predictions))

Python入門經典 程式設計專案(三)

1.dna 排序 dna排序指確定dna分子中的腺嘌呤 胸腺嘧啶 胞嘧啶和鳥嘌呤鹼基的順序 標準表示法的基礎使用其首字母 atcg 所以dna是用4個字元構成的字串。dna字串可能會有百萬個單位 字元 長。子串匹配 substring matching 是乙個過程,確定乙個較短的字串 子串 是否包含...

Python入門之Django專案的建立

首先,安裝好python之後,要使用django先需要建立乙個虛擬環境,進入到你想存放django專案的碟符下,執行cmd切換到當前目錄然後使用命令python m venv blog blog是檔名 建立好虛擬環境如圖 在使用命令 blog script activate來啟用虛擬環境 啟用虛擬環...

Python資料分析入門實戰專案

首先匯入要使用的科學計算包numpy,pandas,視覺化matplotlib,seaborn,以及機器學習包sklearn。import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl i...