- 每個模型的準確率,精確率,召回率,f1-score,auc值,roc曲線模型from sklearn.metrics import accuracy_score, recall_score, f1_score, roc_auc_score, roc_curve, precision_score
from matplotlib import pyplot as plt
# 定義評估函式
def model_metrics(clf, x_train, x_test, y_train, y_test):
# **
y_train_pred = clf.predict(x_train)
y_test_pred = clf.predict(x_test)
y_train_pred_proba = clf.predict_proba(x_train)[:, 1]
y_test_pred_proba = clf.predict_proba(x_test)[:, 1]
# 評估
# 準確性
print('準確性:')
print('train:'.format(accuracy_score(y_train, y_train_pred)))
print('test:'.format(accuracy_score(y_test, y_test_pred)))
#精確性
print('精確性:')
print("train:".format(precision_score(y_train, y_train_pred)))
print("test: ".format(precision_score(y_train, y_train_pred)))
# 召回率
print('召回率:')
print('train:'.format(recall_score(y_train, y_train_pred)))
print('test:'.format(recall_score(y_test, y_test_pred)))
# f1_score
print('f1_score:')
print('train:'.format(f1_score(y_train, y_train_pred)))
print('test:'.format(f1_score(y_test, y_test_pred)))
# roc_auc
print('roc_auc:')
print('train:'.format(roc_auc_score(y_train, y_train_pred_proba)))
print('test:'.format(roc_auc_score(y_test, y_test_pred_proba)))
# 描繪 roc 曲線
fpr_tr, tpr_tr, _ = roc_curve(y_train, y_train_pred_proba)
fpr_te, tpr_te, _ = roc_curve(y_test, y_test_pred_proba)
# ks
print('ks:')
print('train:'.format(max(abs((fpr_tr - tpr_tr)))))
print('test:'.format(max(abs((fpr_te - tpr_te)))))
# 繪圖
plt.plot(fpr_tr, tpr_tr, 'r-',
label="train:auc: ks:".format(roc_auc_score(y_train, y_train_pred_proba),
max(abs((fpr_tr - tpr_tr)))))
plt.plot(fpr_te, tpr_te, 'g-',
label="test:auc: ks:".format(roc_auc_score(y_test, y_test_pred_proba),
max(abs((fpr_tr - tpr_tr)))))
plt.plot([0, 1], [0, 1], 'd--')
plt.legend(loc='best')
plt.title("roc curse")
plt.show()
準確率精確率
召回率f1-score
auc值
roc曲線
邏輯回歸
決策樹train 1.0000 test 0.6847
隨機森林
金融資料採集
陽光金融p2c 陽光網際網路金融服務平台 p2c,p2p 眾籌平台,信用評估模型,金融資料採集,分析,網際網路金融,資訊化,定製開發,專注北京,天津,河北,山東區域,面向金融企業,金融機構。p2p 金融資料採集,網際網路金融,網貸平台,金融管理系統,金融資訊化,信用評估模型 資訊管理 陽光網路致力於...
金融資料2
從這裡可以發現每個特徵彼此之間的相關性。這裡我選取了與 status 最相關的10個特徵 這裡一共篩選出49個特徵 def woe x,y,event 1 res woe iv dict for feature in x.columns x x feature values 1 連續特徵離散化 if...
金融資料3
from sklearn.linear model import logisticregression from sklearn.svm import svc from sklearn.tree import decisiontreeclassifier from sklearn.ensemble ...