pytorch中lstm的公式表示為:
pytorch中lstm的定義如下:
輸入資料格式:
input(seq_len, batch, input_size)
h0(num_layers * num_directions, batch, hidden_size)
c0(num_layers * num_directions, batch, hidden_size)
輸出資料格式:
output(seq_len, batch, hidden_size * num_directions)
hn(num_layers * num_directions, batch, hidden_size)
cn(num_layers * num_directions, batch, hidden_size)
import torch
import gensim
torch.manual_seed(2)
datas=[('你 叫 什麼 名字 ?','n v n n f'),('今天 天氣 怎麼樣 ?','n n adj f'),]
words=[ data[0].split() for data in datas]
tags=[ data[1].split() for data in datas]
id2word=gensim.corpora.dictionary(words)
word2id=id2word.token2id
id2tag=gensim.corpora.dictionary(tags)
tag2id=id2tag.token2id
def sen2id(inputs):
return [word2id[word] for word in inputs]
def tags2id(inputs):
return [tag2id[word] for word in inputs]
# print(sen2id('你 叫 什麼 名字'.split()))
def formart_input(inputs):
return torch.autograd.variable(torch.longtensor(sen2id(inputs)))
def formart_tag(inputs):
return torch.autograd.variable(torch.longtensor(tags2id(inputs)),)
class lstmtagger(torch.nn.module):
def __init__(self,embedding_dim,hidden_dim,***cb_size,target_size):
super(lstmtagger,self).__init__()
self.embedding_dim=embedding_dim
self.hidden_dim=hidden_dim
self.***cb_size=***cb_size
self.target_size=target_size
self.lstm=torch.nn.lstm(self.embedding_dim,self.hidden_dim)
self.log_softmax=torch.nn.logsoftmax()
self.embedding=torch.nn.embedding(self.***cb_size,self.embedding_dim)
self.hidden=(torch.autograd.variable(torch.zeros(1,1,self.hidden_dim)),torch.autograd.variable(torch.zeros(1,1,self.hidden_dim)))
self.out2tag=torch.nn.linear(self.hidden_dim,self.target_size)
def forward(self,inputs):
input=self.embedding((inputs))
out,self.hidden=self.lstm(input.view(-1,1,self.embedding_dim),self.hidden)
tags=self.log_softmax(self.out2tag(out.view(-1,self.hidden_dim)))
return tags
model=lstmtagger(3,3,len(word2id),len(tag2id))
loss_function=torch.nn.nllloss()
optimizer=torch.optim.sgd(model.parameters(),lr=0.1)
for _ in range(100):
model.zero_grad()
input=formart_input('你 叫 什麼 名字'.split())
tags=formart_tag('n n adj f'.split())
out=model(input)
loss=loss_function(out,tags)
loss.backward(retain_variables=true)
optimizer.step()
print(loss.data[0])
input=formart_input('你 叫 什麼'.split())
out=model(input)
out=torch.max(out,1)[1]
print([id2tag[out.data[i]] for i in range(0,out.size()[0])])
**: PyTorch PyTorch高階教程一
前面介紹了pytorch的一些基本用法,從這一節開始介紹pytorch在深度學習中的應用。在開始介紹之前,首先熟悉一下常用的概念和層。class torch.nn.module 舉例 import torch.nn as nn import torch.nn.functional as f clas...
PyTorch PyTorch高階教程三
前面介紹了使用pytorch構造cnn網路,這一節介紹點高階的東西lstm。以及我之前的一篇中文翻譯部落格 class torch.nn.lstm args,kwargs class rnn nn.module def init self,input size,hidden size,num lay...
PyTorch PyTorch入門教程五
還是直接看 是如何寫的。從numpy中建立輸入與輸出。import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.autograd import variable h...