極大似然估計和貝葉斯決策詳解

2021-09-05 11:09:58 字數 256 閱讀 5059

原部落格鏈結1 :

原部落格鏈結2: 

主要內容:總結起來,最大似然估計的目的就是:利用已知的樣本結果,反推最有可能(最大概率)導致這樣結果的引數值。

原理:極大似然估計是建立在極大似然原理的基礎上的乙個統計方法,是概率論在統計學中的應用。極大似然估計提供了一種給定觀察資料來評估模型引數的方法,即:「模型已定,引數未知」。通過若干次試驗,觀察其結果,利用試驗結果得到某個引數值能夠使樣本出現的概率為最大,則稱為極大似然估計。

極大似然估計和貝葉斯估計

假設 存在乙個先驗分布g 那麼 的後驗分布為 f x g f x g d 最大後驗概率估計 即為 後驗概率分布的眾數 m ap x ar gmax f x g 可以看做正則化的最大似然估計,當g是常數時兩者等價 極大似然估計和貝葉斯估計分別代表了頻率派和貝葉斯派的觀點。頻率派認為,引數是客觀存在的,...

極大似然估計和貝葉斯估計

序言 然後根據資料來求出這個 而貝葉斯估計的難點在於p p 需要人為設定,之後再考慮結合map map maximum a posterior 方法來求乙個具體的 所以極大似然估計與貝葉斯估計最大的不同就在於是否考慮了先驗,而兩者適用範圍也變成了 極大似然估計適用於資料大量,估計的引數能夠較好的反映...

極大似然估計與貝葉斯估計

貝葉斯估計與極大似然估計在思想上有很大的不同,代表著統計學中貝葉斯學派和頻率學派對統計的不同認識。極大似然估計是頻率學派觀點,它的觀點可以這樣理解 待估計引數 theta 是客觀存在的,只是未知而已,已知觀測樣本 d dd,求得 hat 使得在 theta hat 時,產生觀測樣本資料 d dd 的...