在acm中,精度問題非常常見。其中計算幾何頭疼的地方一般在於**量大和精度問題,**量問題只要平時注意積累模板一般就不成問題了。精度問題則不好說,有時候乙個精度問題就可能成為一道題的瓶頸,讓你debug半天都找不到錯誤出在哪。
(原文出處:
1.浮點數為啥會有精度問題:
浮點數(以c/c++為準),一般用的較多的是float, double。
佔位元組數
數值範圍
十進位制精度位數
float 4
-3.4e-38~3.4e38
6~7double 8
-1.7e-308~1.7e308
14~15
如果記憶體不是很緊張或者精度要求不是很低,一般選用double。14位的精度(是有效數字位,不是小數點後的位數)通常夠用了。注意,問題來了,資料精度位數達到了14位,但有些浮點運算的結果精度並達不到這麼高,可能準確的結果只有10~12位左右。那低幾位呢?自然就是不可預料的數字了。這給我們帶來這樣的問題:即使是理論上相同的值,由於是經過不同的運算過程得到的,他們在低幾位有可能(一般來說都是)是不同的。這種現象看似沒太大的影響,卻會一種運算產生致命的影響: ==。恩,就是判斷相等。注意,c/c++中浮點數的==需要完全一樣才能返回true。來看下面這個例子。
#include#includeint main()
輸出:
a = 3.14159265358979360000
b = 3.14159265358979310000
a - b = 0.00000000000000044409
a == b = 0
我們解決的辦法是引進eps,來輔助判斷浮點數的相等。
2. eps
eps縮寫自epsilon,表示乙個小量,但這個小量又要確保遠大於浮點運算結果的不確定量。eps最常見的取值是1e-8左右。引入eps後,我們判斷兩浮點數a、b相等的方式如下:
定義三出口函式如下: int sgn(double a)
則各種判斷大小的運算都應做如下修正:
傳統意義
修正寫法1
修正寫法2
a == b
sgn(a - b) == 0
fabs(a – b) < eps
a != b
sgn(a - b) != 0
fabs(a – b) > eps
a < b
sgn(a - b) < 0
a – b < -eps
a <= b
sgn(a - b) <= 0
a – b < eps
a > b
sgn(a - b) > 0
a – b > eps
a >= b
sgn(a - b) >= 0
a – b > -eps
這樣,我們才能把相差非常近的浮點數判為相等;同時把確實相差較大(差值大於eps)的數判為不相等。
ps: 養成好習慣,盡量不要再對浮點數做==判斷。例如,我的修正寫法2裡就沒有出現==。
3. eps帶來的函式越界
如果sqrt(a), asin(a), acos(a) 中的a是你自己算出來並傳進來的,那就得小心了。
如果a本來應該是0的,由於浮點誤差,可能實際是乙個絕對值很小的負數(比如1e-12),這樣sqrt(a)應得0的,直接因a不在定義域而出錯。
類似地,如果a本來應該是±1,則asin(a)、acos(a)也有可能出錯。
因此,對於此種函式,必需事先對a進行校正。
4. 輸出陷阱i
這一節和下一節一樣,都是因為題目要求輸出浮點數,導致的問題。而且都和四捨五入有關。
1. printf(「%.3lf」, a); //保留a的三位小數,按照第四位四捨五入
2. (int)a; //將a靠進0取整
3. ceil(a); floor(a); //顧名思義,向上取證、向下取整。需要注意的是,這兩個函式都返回double,而非int
其中第一種很常見於輸出(nonsense…)。
現在考慮一種情況,題目要求輸出保留兩位小數。有個case的正確答案的精確值是0.005,按理應該輸出0.01,但你的結果可能是0.005000000001(恭喜),也有可能是0.004999999999(悲劇),如果按照printf(「%.2lf」, a)輸出,那你的遭遇將和括號裡的字相同。
解決辦法是,如果a為正,則輸出a+eps, 否則輸出a-eps
典型案例: poj2826
5. 輸出陷阱ii
icpc題目輸出有個不成文的規定(有時也成文),不要輸出: -0.000
那我們首先要弄清,什麼時候按printf(「%.3lf\n」, a)輸出會出現這個結果。
直接給出結果好了:a∈(-0.000499999……, -0.000……1)
所以,如果你發現a落在這個範圍內,請直接輸出0.000。更保險的做法是用sprintf直接判斷輸出結果是不是-0.000再予處理。
典型案例:uva746
6. 範圍越界
這個嚴格來說不屬於精度範疇了,不過湊數還是可以的。請注意,雖然double可以表示的數的範圍很大,卻不是不窮大,上面說過最大是1e308。所以有些時候你得小心了,比如做連乘的時候,必要的時候要換成對數的和。
典型案例:hdu3558
7. 關於set
有時候我們可能會有這種需求,對浮點數進行 插入、查詢是否插入過 的操作。手寫hash表是乙個方法(hash函式一樣要小心設計),但set不是更方便嗎。但set好像是按==來判重的呀?貌似行不通呢。經觀察,set不是通過==來判斷相等的,是通過《來進行的,具體說來,只要a
如果將小於定義成: bool operator < (const dat dat)const就可以解決問題了。 (基本型別不能過載運算子,所以封裝了下)
8. 輸入值波動過大
這種情況不常見,不過可以幫助你更熟悉eps。假如一道題輸入說,給乙個浮點數a, 1e-20 < a < 1e20。那你還敢用1e-8做eps麼?合理的做法是把eps按照輸入規模縮放到合適大小。
典型案例: hustoj 1361
9. 一些建議
容易產生較大浮點誤差的函式有asin、 acos。歡迎盡量使用atan2。
另外,如果資料明確說明是整數,而且範圍不大的話,使用int或者long long代替double都是極佳選擇,這樣就不存在浮點誤差了
ACM中的浮點數精度處理
在acm中,精度問題非常常見。其中計算幾何頭疼的地方一般在於 量大和精度問題,量問題只要平時注意積累模板一般就不成問題了。精度問題則不好說,有時候乙個精度問題就可能成為一道題的瓶頸,讓你debug半天都找不到錯誤出在哪。1.浮點數為啥會有精度問題 浮點數 以c c 為準 一般用的較多的是float,...
ACM中的浮點數精度處理
在acm中,精度問題非常常見。其中計算幾何頭疼的地方一般在於 量大和精度問題,量問題只要平時注意積累模板一般就不成問題了。精度問題則不好說,有時候乙個精度問題就可能成為一道題的瓶頸,讓你debug半天都找不到錯誤出在哪。1.浮點數為啥會有精度問題 浮點數 以c c 為準 一般用的較多的是float,...
浮點數精度問題
一 例子 首先我們去編譯器試試 double a 1.9 通過新增監視檢視a的值 會發現a的值是1.8999999 二 開始今天的學習 在最開始學c 的時候並沒有對浮點數進行很深入的學習,認為浮點不就是小數嘛,首先在c 的巨集裡面有 flt max 和 flt min 的定義,float是四位元組的...