計算機記憶體中的對齊

2021-09-30 13:25:20 字數 2937 閱讀 8994

⒈現代計算機中記憶體空間都是按照byte劃分的,從理論上講似乎對任何型別的變數的訪問可以從任何位址開始,但實際情況是在訪問特定變數的時候經常在特定的記憶體位址訪問,這就需要各型別資料按照一定的規則在空間上排列,而不是順序的乙個接乙個的排放,這就是對齊。

⒉對齊的作用和原因:各個硬體平台對儲存空間的處理上有很大的不同。一些平台對某些特定型別的資料只能從某些特定位址開始訪問。其他平台可能沒有這種情況, 但是最常見的是如果不按照適合其平台的要求對資料存放進行對齊,會在訪問效率上帶來損失。比如有些平台每次讀都是從偶位址開始,如果乙個int型(假設為 32位)如果存放在偶位址開始的地方,那麼乙個讀週期就可以讀出,而如果存放在奇位址開始的地方,就可能會需要2個讀週期,並對兩次讀出的結果的高低 位元組進行拼湊才能得到該int資料。顯然在讀取效率上下降很多。這也是空間和時間的博弈。

通常,我們寫程式的時候,不需要考慮對齊問題。編譯器會替我們選擇適合目標平台的對齊策略。當然,我們也可以通知給編譯器傳遞預編譯指令而改變對指定資料的對齊方法。

但是,正因為我們一般不需要關心這個問題,所以因為編輯器對資料存放做了對齊,而我們不了解的話,常常會對一些問題感到迷惑。最常見的就是struct資料結構的sizeof結果,出乎意料。為此,我們需要對對齊演算法所了解。

對齊的演算法:

由於各個平台和編譯器的不同,現以本人使用的gcc version 3.2.2編譯器(32位x86平台)為例子,來討論編譯器對struct資料結構中的各成員如何進行對齊的。

設結構體如下定義:

struct a ;

結構體a中包含了4位元組長度的int乙個,1位元組長度的char乙個和2位元組長度的short型資料乙個。所以a用到的空間應該是7位元組。但是因為編譯器要對資料成員在空間上進行對齊。

所以使用sizeof(strcut a)值為8。

現在把該結構體調整成員變數的順序。

struct b ;

這時候同樣是總共7個位元組的變數,但是sizeof(struct b)的值卻是12。

下面我們使用預編譯指令#pragma pack (value)來告訴編譯器,使用我們指定的對齊值來取代預設的。

#pragma pack ⑵/*指定按2位元組對齊*/

struct c ;

#pragma pack () /*取消指定對齊,恢復預設對齊*/

sizeof(struct c)值是8。

修改對齊值為1:

#pragma pack ⑴/*指定按1位元組對齊*/

struct d ;

#pragma pack () /*取消指定對齊,恢復預設對齊*/

sizeof(struct d)值為7。

對於char型資料,其自身對齊值為1,對於short型為2,對於int,float型,其自身對齊值為4,對於double型,其自身對齊值為8,單位位元組。

這裡面有四個概念值:

1)資料型別自身的對齊值:就是上面交代的基本資料型別的自身對齊值。

2)指定對齊值:#pragma pack (value)時的指定對齊值value。

3)結構體或者類的自身對齊值:其成員中自身對齊值最大的那個值。

4)資料成員、結構體和類的有效對齊值:自身對齊值和指定對齊值中較小的那個值。

有了這些值,我們就可以很方便的來討論具體資料結構的成員和其自身的對齊方式。有效對齊值n是最終用來決定資料存放位址方式的值,最重要。有效對齊n,就是表示「對齊在n上」,也就是說該資料的"存放起始位址%n=0".而資料結構中的資料變數都是按定義的先後順序來排放的。第乙個資料變數的起始位址就是 資料結構的起始位址。結構體的成員變數要對齊排放,結構體本身也要根據自身的有效對齊值圓整(就是結構體成員變數占用總長度需要是對結構體有效對齊值的整 數倍,結合下面例子理解)。這樣就不難理解上面的幾個例子的值了。

例子分析:

分析例子b;

struct b ;

假設b從位址空間0x0000開始排放。該例子中沒有定義指定對齊值,在筆者環境下,該值預設為4。第乙個成員變數b的自身對齊值是1,比指定或者預設指 定對齊值4小,所以其有效對齊值為1,所以其存放位址0x0000符合0x0000%1=0.第二個成員變數a,其自身對齊值為4,所以有效對齊值也為 4,所以只能存放在起始位址為0x0004到0x0007這四個連續的位元組空間中,複核0x0004%4=0,且緊靠第乙個變數。第三個變數c,自身對齊 值為2,所以有效對齊值也是2,可以存放在0x0008到0x0009這兩個位元組空間中,符合0x0008%2=0。所以從0x0000到0x0009存 放的都是b內容。再看資料結構b的自身對齊值為其變數中最大對齊值(這裡是b)所以就是4,所以結構體的有效對齊值也是4。根據結構體圓整的要求, 0x0009到0x0000=10位元組,(10+2)%4=0。所以0x0000a到0x000b也為結構體b所占用。故b從0x0000到0x000b 共有12個位元組,sizeof(struct b)=12;

同理,分析上面例子c:

#pragma pack ⑵/*指定按2位元組對齊*/

struct c ;

#pragma pack () /*取消指定對齊,恢復預設對齊*/

第乙個變數b的自身對齊值為1,指定對齊值為2,所以,其有效對齊值為1,假設c從0x0000開始,那麼b存放在0x0000,符合0x0000%1= 0;第二個變數,自身對齊值為4,指定對齊值為2,所以有效對齊值為2,所以順序存放在0x0002、0x0003、0x0004、0x0005四個連續 位元組中,符合0x0002%2=0。第三個變數c的自身對齊值為2,所以有效對齊值為2,順序存放

在0x0006、0x0007中,符合0x0006%2=0。所以從0x0000到0x00007共八字節存放的是c的變數。又c的自身對齊值為4,所以 c的有效對齊值為2。又8%2=0,c只占用0x0000到0x0007的八個位元組。所以sizeof(struct c)=8.

有 了以上的解釋,相信你對c語言的位元組對齊概念應該有了清楚的認識了吧。在網路程式中,掌握這個概念可是很重要的喔,在不同平台之間(比如在windows 和linux之間)傳遞2進製流(比如結構體),那麼在這兩個平台間必須要定義相同的對齊方式,不然莫名其妙的出了一些錯,可是很難排查的哦^_^。

計算機記憶體

1.1 計算機硬體記憶體架構。計算機cpu central processing unit 和記憶體的互動是最頻繁的,記憶體是我們的快取記憶體區。使用者磁碟和cpu的互動,而cpu運轉速度越來越快,磁碟遠遠跟不上cpu的讀寫速度,才設計了記憶體,使用者快取使用者io等待導致cpu的等待成本。但是隨著...

計算機記憶體中的分割槽

c語言中乙個簡單的指標練習題 include void main void copy string char from,char to to 0 功能是將字串a拷貝到字串b中去。編譯鏈結都ok,執行報錯。提示非法訪問。下面直接貼內容 在c 中,記憶體分成5個區,他們分別是堆 棧 自由儲存區 全域性 ...

計算機記憶體定址

摘自 1 基本概念 cpu段式管理 段式管理的基本原理是指把乙個程式分成若干個段 segment 進行儲存,每個段都是乙個邏輯實體 logical entity 乙個使用者作業或程序所包含的段對應乙個二維線形虛擬空間,程式通過分段 segmentation 劃分為多個模組,故可以對程式的各個模組分別...