#十個特徵,4類動物
animal =
['雞'
,'鴨'
,'魚'
,'狗'
]dict_feature =
dog_fea =
['吃肉'
,'有犬齒'
,'跑得快'
]fish_fea =
['有魚鱗'
,'會游泳'
,'有鰓'
]yazi_fea =
['有羽毛'
,'有爪'
,'會游泳'
]chick_fea =
['有羽毛'
,'有爪'
,'會下蛋'
]fea =
now_feature =
print
('**********************************'
)print
('*********all feature here*********'
)print
('**********************************'
)print
(dict_feature)
print
('**********************************'
)print
('*********all classial here********'
)print
('**********************************'
)print
('狗:{},魚:{},鴨:{},雞:{}'
.format
(dog_fea,fish_fea,yazi_fea,chick_fea)
)print
('**********************************'
)print
('*********請輸入3個特徵:***********'
)print
('**********************************'
)curr =
1while curr:
now_feature =
fea =
for i in
range(0
,3):
feature =
input
('請依次輸入3個特徵的數字序號:(輸入"exit()"可以退出)'
)if feature ==
'exit()'
: curr =
0break])
print
(now_feature[i]
)if curr ==0:
break
print
('您輸入的特徵是:{}'
.format
(now_feature)
) a =
0 b =
0 c =
0 d =
0 flag =
0for i in
range(0
,3):
if now_feature[i]
in dog_fea:
#print(now_feature[i]
a = a+
1if a >2:
print
('是狗'
) a =
0 flag =
1if now_feature[i]
in fish_fea:
#print(now_feature[i])
b = b+
1if b >2:
print
('是魚'
) b =
0 flag =
1if now_feature[i]
in yazi_fea:
#print(now_feature[i])
c = c+
1if c >2:
print
('是鴨'
) c =
0 flag =
1if now_feature[i]
in chick_fea:
#print(now_feature[i])
d = d+
1if d >2:
print
('是雞'
) d =
0 flag =
1if flag==0:
print
('無法準確判斷'
)if a >1:
print
('狗的概率為66%'
)if b >1:
print
('魚的概率為66%'
)if c >1:
print
('鴨的概率為66%'
)if d >1:
print
('雞的概率為66%'
)
python呼叫百度api動物識別
免費的,但識別幾百張後容易掉線 import requests url 字典form的image鍵對應的值為 data image jpeg base64,的64位編碼 form r requests.post url,data form 每天500次免費呼叫機會,之後0.8元 千次。但是也會出現掉...
基於GMM的語音識別python實現
用錄音寶錄下3到5個人的譜音每乙個,每個人10s到20s,建立gmm聲紋識別模板,設定場景 聲紋模板內的所有人交替討論乙個話題,大約2分鐘,用gmm模型分割識別講話人的身份。並統計時間。思路 通過提取音訊原本的語音特徵形成乙個集 聚類 以後,對後來的資料進行概率判斷,類似於之前的大作業使用的anno...
基於python的OCR中文字元識別
將翻譯成文字一般被稱為光學文字識別 optical character recognition,ocr 可以實現ocr 的底層庫並不多,目前很多庫都是使用共同的幾個底層ocr 庫,或者是在上面進行定製。tesseract 是乙個ocr 庫,目前由google 贊助 google 也是一家以ocr 和...