演算法原理:
#includeusing namespace xfeatures2d;
嗯,在開頭要包含這個庫然後申明命名空間
src = imread("c:/users/pbiha/desktop/image/1.png",imread_grayscale);
imread_grayscale就是0,表示讀入一張灰度影象
ptr<>
這是乙個智慧型指標像指標一樣的用,但是更加方便記憶體的管理
#include#include#includeusing namespace xfeatures2d;
using namespace std;
using namespace cv;
int main()
namedwindow("input", cv_window_autosize);
imshow("input", src);
int minhessian = 300;
ptrdetector = surf::create(minhessian);
vectorketpoints;
detector->detect(src, ketpoints, mat());
drawkeypoints(src, ketpoints, result_img, scalar::all(-1),drawmatchesflags::default);
namedwindow("outputimg", cv_warp_fill_outliers);
imshow("outputimg", result_img);
waitkey(0);
return 0;
}
Surf特徵檢測
原文 對於其原理我還沒看過,只是略知道是特徵點檢測的,最近同學用到需要將檢測到的匹配的特徵點輸出來,這才看了一下函式的介面,如果以後用到了原理,再去研究和學習一下,這裡對 進行一下備份 cpp view plain copy include include include opencv2 core ...
特徵檢測演算法 SURF
reference surf 演算法,全稱是 speeded up robust features。該運算元在保持 sift 運算元優良效能特點的基礎上,同時解決了 sift 計算複雜度高 耗時長的缺點,對興趣點提取及其特徵向量描述方面進行了改進,且計算速度得到提高。具體步驟為 1 構造hessia...
surf特徵檢測描述和匹配
include include include opencv2 core core.hpp include opencv2 features2d features2d.hpp include opencv2 highgui highgui.hpp include includeusing names...